COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Intake Camshaft Actuator Solenoid Circuit – Bank 1	P0010	Detects a VVT system error by monitoring the circuit for electrical integrity	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		System supply voltage is within limits Output driver is commanded on, Ignition switch is in crank or run position	< 18 Volts	20 failures out of 25 samples 250 ms /sample, continuous	Type B 2 trips
Intake Camshaft System Performance – Bank 1	P0011	Detects a VVT system error by comparing the desired and actual cam positions when VVT is activated	Camshaft position error [absolute value of (desired position - actual position)] is compared to thresholds to determine if excessive	(Intake cam Bank 1)Cam Position Error > KtPHSD_phi_CamPosErrorLimIc 1 Deg (see Supporting Table)	The following DTC's are NOT active: P0010 IntkCMP B1 Circuit P0340, P0341, Intake B1 Cam sensors P0335, P0336, Crank sensors P0016, P0017, P0018, P0019 Cam to crank rationality Engine is running	System Voltage > 11 Volts, and System Voltage < 18 Volts Desired cam position cannot vary more than 7.5 Cam Deg for at least KtPHSD_t_StablePositi onTimelc1 seconds (see Supporting Table)	200 failures out of 1000 samples 1000 ms /sample	Type B 2 trips
Exhaust Camshaft Actuator Solenoid Circuit – Bank 1	P0013	Detects a VVT system error by monitoring the circuit for electrical	The ECM detects that the commanded state of the driver		VVT is enabled Desired camshaft position > 0 Power Take Off (PTO) not active System supply voltage is within limits	> 11 Volts, and < 18 Volts	19 failures out of 30 samples	Type B 2 trips
(for applications with a Bank 1 exhaust cam phaser)		integrity	and the actual state of the control circuit do not match.		Output driver is commanded on, Ignition switch is in crank or run position		250 ms /sample, continuous	po
Exhaust Camshaft System Performance – Bank 1 (for applications with a Bank 1 exhaust cam phaser)	P0014	Detects a VVT system error by comparing the desired and actual cam positions when VVT is activated	Camshaft position error [absolute value of (desired position - actual position)] is compared to thresholds to determine if excessive	(Exhaust cam Bank 1)Cam Position Error > KtPHSD_phi_CamPosErrorLimEc 1 Deg (see Supporting Table)	The following DTC's are NOT active: P0013 ExhCMP B1 Circuit P0365, P0366, Exh B1 Cam sensors P0335, P0336, Crank sensors P0016, P0017, P0018, P0019 Cam to crank rationality	System Voltage > 11 Volts, and System Voltage < 18 Volts Desired cam position cannot vary more than 1.0 Cam Deg for at least KtPHSD_t_StablePositi onTimeEc1 seconds (see Supporting Table)	135 failures out of 150 samples	Type B 2 trips
					Engine is running VVT is enabled Desired camshaft position > 0 Power Take Off (PTO) not active		100 ms /sample	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Crankshaft Position (CKP)- Camshaft Position (CMP) Correlation Bank 1 Sensor A	P0016	Detects cam to crank misalignment by monitoring if cam sensor pulse for bank 1 sensor A occurs during the incorrect crank position	4 cam sensor pulses more than 11 crank degrees before or 11 crank degrees after nominal position in one cam revolution.		Engine Speed Crankshaft and camshaft position signals are synchronized Cam phaser is in "parked" position No Active DTCs: No Pending DTCs:	< 2000 P0335, P0336 P0340, P0341 5VoltReferenceA_FA 5VoltReferenceB_FA P0341		Type B 2 trips
Crankshaft Position (CKP)- Camshaft Position (CMP) Correlation Bank 1 Sensor B (for applications with a Bank 1 exhaust cam phaser)	P0017	Detects cam to crank misalignment by monitoring if cam sensor pulse for bank 1 sensor B occurs during the incorrect crank position	4 cam sensor pulses more than - 700 crank degrees before or 700 crank degrees after nominal position in one cam revolution.		Engine Speed Crankshaft and camshaft position signals are synchronized Cam phaser is in "parked" position No Active DTCs: No Pending DTCs:	< 1200 P0335, P0336 P0365, P0366 5VoltReferenceA_FA 5VoltReferenceB_FA P0366	4 failures out of 5 samples if the engine is being assisted by the starter 24 failures out of 30 samples if the engine is running without assistance from the starter One sample per cam rotation	Type B 2 trips
O2S Heater Control Circuit Bank 1 Sensor 1	P0030	This DTC checks the Heater Output Driver circuit for electrical integrity.	Voltage low during driver open state (indicates short-to-ground or open circuit) or voltage high during driver closed state (indicates short to voltage).		lgn Switch position Ignition Voltage Engine Speed	11.0 volts < Ign Voltage < 18.0 volts	20 failures out of 25 samples 250 ms /sample Continuous	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Supercharger Bypass Valve Control Circuit (Supercharger applications only)	P0033	Electrical Integrity of Supercharger Bypass Valve Control Circuitry	ECM detects that commanded and actual states of output driver do not match		Ignition Voltage Ignition Voltage Engine Speed	>= 11.00 Volts <= 18.00 Volts > 0	20 failures out of 25 samples 1 sample every 250 msec	Type B 2 trips
O2S Heater Control Circuit Bank 1 Sensor 2	P0036	This DTC checks the Heater Output Driver circuit for electrical integrity.	Voltage low during driver open state (indicates short-to-ground or open circuit) or voltage high during driver closed state (indicates short to voltage).		lgn Switch position Ignition Voltage Engine Speed		20 failures out of 25 samples 250 ms /sample Continuous	2 trips Type B
O2S Heater Control Circuit Bank 2 Sensor 1	P0050	This DTC checks the Heater Output Driver circuit for electrical integrity.	Voltage low during driver open state (indicates short-to-ground or open circuit) or voltage high during driver closed state (indicates short to voltage).		Ign Switch position Ignition Voltage Engine Speed		20 failures out of 25 samples 250 ms /sample Continuous	2 trips Type B
HO2S Heater Resistance Bank 1 Sensor 1	P0053	Detects an oxygen sensor heater having an incorrect or out of range resistance value.	Learned Heater Resistance.	Calculated Heater Resistance < 2.8 ohms -OR-Calculated Heater Resistance > 9.5 ohms	Coolant – IAT Engine Soak Time Coolant Temp Ignition Voltage	> 28800 seconds -30.0 °C ≤ Coolant ≤ 45.0 °C	Once per valid cold start	2 trips Type B
HO2S Heater Resistance Bank 1 Sensor 2	P0054	Detects an oxygen sensor heater having an incorrect or out of range resistance value.	Learned Heater Resistance.	Calculated Heater Resistance < 4.1 ohms -OR- Calculated Heater Resistance > 10.8 ohms	Coolant – IAT Engine Soak Time Coolant Temp Ignition Voltage	> 28800 seconds -30.0 °C ≤ Coolant ≤ 45.0 °C	Once per valid cold start	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Heater Control Circuit Bank 2 Sensor 2	P0056	This DTC checks the Heater Output Driver circuit for electrical integrity.	Voltage low during driver open state (indicates short-to-ground or open circuit) or voltage high during driver closed state (indicates short to voltage).		Ign Switch position Ignition Voltage Engine Speed	11.0 volts < Ign Voltage < 18.0 volts	20 failures out of 25 samples 250 ms /sample Continuous	2 trips Type B
HO2S Heater Resistance Bank 2 Sensor 1	P0059	Detects an oxygen sensor heater having an incorrect or out of range resistance value.	Learned Heater Resistance.	Calculated Heater Resistance < 2.8 ohms -OR-Calculated Heater Resistance > 9.5 ohms	Coolant – IAT Engine Soak Time Coolant Temp Ignition Voltage	> 28800 seconds -30.0 °C ≤ Coolant ≤ 45.0 °C	Once per valid cold start	2 trips Type B
HO2S Heater Resistance Bank 2 Sensor 2	P0060	Detects an oxygen sensor heater having an incorrect or out of range resistance value.	Learned Heater Resistance.	Calculated Heater Resistance < 4.1 ohms -OR- Calculated Heater Resistance > 10.8 ohms	No Active DTC's Coolant – IAT Engine Soak Time Coolant Temp Ignition Voltage Engine Run Time	> 28800 seconds -30.0 °C ≤ Coolant ≤ 45.0 °C < 18.0 volts	Once per valid cold start	2 trips Type B
MAP / MAF / Throttle Position Correlation	P0068	Detect when MAP <u>and</u> MAF do not match estimated engine airflow as established by the TPS	1) Difference between measured MAP and estimated MAP exceeds threshold (kPa), or P0651 (5 Volt Ref), or P0107 (MAP circuit low), or P0108 (MAP circuit high) have failed this key cycle, then MAP portion of diagnostic fails	Table, f(TPS). See supporting tables	Engine Speed	Run/crank voltage or	Continuously fail MAP and MAF portions of diagnostic for 0.1875 ms Continuous in MAIN processor	Type: A MIL: YES Trips: 1
			2) Difference between measured MAF and estimated MAF exceed threshold (grams/sec), or P0102	Table, f(TPS). See supporting tables				

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			(MAF circuit low), or P0103 (MAF circuit hi) have failed this key cycle, or battery voltage < 10.0 volts, then MAF portion of diagnostic fails					
Barometric Pressure (BARO) - Supercharger Inlet Pressure Correlation (Supercharger applications only)	P006D	Compares baro sensor to the calculated baro estimate (part throttle calculation or unthrottled Supercharger Inlet Pressure)	Difference between baro sensor reading and estimated baro when distance since last estimated baro update OR Difference between baro sensor reading and estimated baro when distance since last estimated baro update	> 15.0 kPa <= 23.00 kilometers > 20.0 kPa > 23.00 kilometers	No Active DTCs:	ECT_Sensor_Ckt_FA IAT_SensorFA MAF_SensorFA	20 failures out of 25 samples 1 sample every 250 msec	Type B 2 trips
Intake Air Temperature Sensor 2 Circuit Performance (For applications with a second IAT sensor)	P0096	Detects an IAT2 sensor that has stuck in range by comparing to IAT and engine coolant temperature at startup	ABS(Power Up IAT - Power Up IAT2) AND ABS(Power Up ECT – Power Up IAT2) > ABS(Power Up ECT – Power Up IAT2) > ABS(Power Up ECT – Power Up IAT) AND P0116 is passing	> 20 deg C	Time between current ignition cycle and the last time the engine was running No Active DTCs:		Executes once at the beginning of each ignition cycle if enable conditions are met	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Intake Air Temperature Sensor 2 Circuit Low (High Temperature) (For applications with a second IAT sensor)	P0097	Detects a continuous short to ground in the IAT 2 signal circuit or the IAT 2 sensor	Raw IAT 2 Input	< 45 Ohms (~150 deg C)	Engine Run Time Coolant Temp Vehicle Speed No Active DTCs:	> 10.0 seconds < 150 deg C >= 0 KPH ECT_Sensor_Ckt_FA ECT_Sensor_Ckt_FP VehicleSpeedSensorEr ror	50 failures out of 63 samples 1 sample every 100 msec	Type B 2 trips
Intake Air Temperature Sensor 2 Circuit High (Low Temperature) (For applications with a second IAT sensor)	P0098	Detects a continuous open circuit in the IAT 2 signal circuit or the IAT 2 sensor	Raw IAT 2 Input	> 420000 Ohms (~-60 deg C)	Engine Run Time Coolant Temp Vehicle Speed Engine Air Flow No Active DTCs:	> 10.0 seconds > -40 deg C <= 512 KPH >= 512 gm/sec ECT_Sensor_Ckt_FA ECT_Sensor_Ckt_FP VehicleSpeedSensorEr ror MAF_SensorFA MAF_SensorFP MAF SensorTFTKO	50 failures out of 63 samples 1 sample every 100 msec	Type B 2 trips
Mass Air Flow System Performance (naturally aspirated)	P0101	Determines if the MAF sensor is stuck within the normal operating range	Filtered Throttle Model AND ABS(Measured Flow – Modeled Air Flow) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered	<= 230 kPa/(g/s) > 12 grams/sec > 15.0 kPa	Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)	>= 450 RPM <= 8000 RPM > 70 Deg C < 125 Deg C > -20 Deg C < 125 Deg C < 125 Deg C < 1000 Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and MAF Residual Weight Factor Based on MAF	Continuous Calculation are performed every 12.5 msec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					No Active DTCs:	Estimate MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM See table "IFRD Residual Weighting Factors". MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensor_FA ECT_Sensor_FA ECT_Sensor_Ckt_FA IAT_SensorFP CylDeacSystemTFTKO		
Mass Air Flow System Performance (supercharged)	P0101	Determines if the MAF sensor is stuck within the normal operating range	AND ABS(Measured Flow – Modeled Air Flow) Filtered AND ABS(Measured MAP – MAP Model 1) Filtered	> 300 kPa/(g/s) > 10 grams/sec > 15.0 kPa		>= 450 RPM <= 8000 RPM > -7 Deg C < 125 Deg C > -7 Deg C < 125 Deg C < 125 Deg C < 0.00 Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and	Continuous Calculation are performed every 12.5 msec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
			AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured SCIAP – SCIAP Model 1) Filtered AND	> 15.0 kPa > 15.0 kPa		MAF Residual Weight Factor Based on MAF Estimate MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor		
			ABS(Measured SCIAP – SCIAP Model 2) Filtered	> 15.0 kPa		MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 1 multiplied by SCIAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 2 multiplied by SCIAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
					No Active DTCs:	See table "IFRD Residual Weighting Factors Supercharger application". MAP_SensorCircuitFA		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO IAT2_SensorCircuitFP SCIAP_SensorCircuitFP SCIAP_SensorCircuitFA SCIAP_SensorCircuitFP AmbientAirDefault_SC		
Mass Air Flow Sensor Circuit Low Frequency	P0102	Detects a continuous short to low or a open in either the signal circuit or the MAF sensor	MAF Output	<= 1500 Hertz (~ 1.061 gm/sec)	Engine Run Time Engine Speed Ignition Voltage Above criteria present for a period of time	> 1.0 seconds >= 300 RPM >= 8.0 Volts >= 1.0 seconds	400 failures out of 500 samples 1 sample every cylinder firing event	Type B 2 trips
Mass Air Flow Sensor Circuit High Frequency	P0103	Detects a high frequency output from the MAF sensor	MAF Output	>= 14500 Hertz (~ 386.83 gm/sec)	Engine Run Time Engine Speed Ignition Voltage Above criteria present for a period of time	> 1.0 seconds >= 300 RPM >= 8.0 Volts >= 1.0 seconds	400 failures out of	Type B 2 trips
Manifold Absolute Pressure Sensor Performance (naturally aspirated)	P0106	Determines if the MAP sensor is stuck within the normal operating range	Filtered Throttle Model AND ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered	<= 230 kPa/(g/s) > 15.0 kPa > 15.0 kPa	Engine Speed Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)	>= 450 RPM <= 8000 RPM > 70 Deg C < 125 Deg C > -20 Deg C < 125 Deg C	Continuous	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM		
						MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM		
						MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM		
					No Active DTCs:	See table "IFRD Residual Weighting Factors".		
						MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA		
						MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP		
						CylDeacSystemTFTKO		
Manifold Absolute Pressure Sensor Performance (supercharged)		Determines if the MAP sensor is stuck within the normal operating range	See table "Supercharger Intake Flow Rationality Diagnostic Failure Matrix" for combinations of model failures that can set this DTC.		Engine Speed Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)	>= 450 RPM <= 8000 RPM > -7 Deg C < 125 Deg C > -7 Deg C < 125 Deg C	Continuous Calculation are performed every 12.5 msec	Type B 2 trips
			Filtered Throttle Model AND	> 300 kPa/(g/s)		< 0.00		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			ABS(Measured Flow – Modeled Air Flow) Filtered AND ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured SCIAP – SCIAP Model 1) Filtered AND ABS(Measured SCIAP – SCIAP Model 2) Filtered	> 10 grams/sec > 15.0 kPa > 15.0 kPa > 15.0 kPa > 15.0 kPa		Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and MAF Residual Weight Factor Based on MAF Estimate MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost SCIAP Model 1 multiplied by SCIAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of		
						Boost SCIAP Model 2 multiplied by SCIAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					No Active DTCs:	See table "IFRD Residual Weighting Factors Supercharger Application". MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO IAT2_SensorFA IAT2_SensorCircuitFP SCIAP_SensorCircuitFP SCIAP_SensorCircuitFP AmbientAirDefault_SC		
Manifold Absolute Pressure Sensor Circuit Low		Detects a continuous short to low or open in either the signal circuit or the MAP sensor.	MAP Voltage	< 3.0 % of 5 Volt Range (0.2 Volts = 3.5 kPa)	Continuous		1 sample every 12.5 msec	2 trips
Manifold Absolute Pressure Sensor Circuit High		Detects an open sensor ground or continuous short to high in either the signal circuit or the MAP sensor.	MAP Voltage	> 90.0 % of 5 Volt Range (4.5 Volts = 115.3 kPa)	Continuous			Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Intake Air Temperature Sensor Circuit Performance (For applications with a second IAT sensor)	Sensor Circuit Performance stuck in range (For applications with a IAT2 and engir	Detects an IAT sensor that has stuck in range by comparing to IAT2 and engine coolant temperature at startup	ABS(Power Up IAT - Power Up IAT2) AND	> 20 deg C	Time between current ignition cycle and the last time the engine was running		Executes once at the beginning of each ignition cycle if enable conditions are met	Type B 2 trips
			ABS(Power Up ECT – Power Up IAT) > ABS(Power Up ECT – Power Up IAT2)		No Active DTCs:	ECTSensor_FA ECT_Sensor_Ckt_FA IAT_SensorCircuitFA		
			AND P0116 is Failing			IAT2_SensorCircuitFA P0116 Test Aborted = FALSE P0116 Test Complete		
Intake Air Temperature Sensor Circuit Low (High Temperature)	P0112	Detects a continuous short to ground in the IAT signal circuit or the IAT sensor	Raw IAT Input	< 45 Ohms (~150 deg C)	Engine Run Time Coolant Temp Vehicle Speed	< 150 deg C >= 0 KPH	50 failures out of 63 samples 1 sample every	Type B 2 trips
					No Active DTCs:	ECT_Sensor_Ckt_FA ECT_Sensor_Ckt_FP VehicleSpeedSensorEr ror	100 msec	
Intake Air Temperature Sensor Circuit High (Low Temperature)	P0113	Detects a continuous open circuit in the IAT signal circuit or the IAT sensor	Raw IAT Input	> 420000 Ohms (~-60 deg C)	Engine Run Time Coolant Temp Vehicle Speed Engine Air Flow No Active DTCs:	> 10.0 seconds	50 failures out of 63 samples 1 sample every 100 msec	Type B 2 trips
Engine Coolant Temperature (ECT) Sensor Performance	P0116	This DTC detects ECT temp sensor stuck in mid range.	A failure will be reported if any of the following occur:		No Active DTC's	VehicleSpeedSensorEr ror MAF_SensorFA MAF_SensorFP MAF_SensorTFTKO VehicleSpeedSensor_F A IAT_SensorFA	1 failure	2 trips Type E

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			1) ECT at power up > IAT at power up by an IAT based table lookup value after a minimum 28800 second soak (fast fail). 2) ECT at power up > IAT at power up by 15.0 C after a minimum 28800 second soak and a block heater has not been detected. 3) ECT at power up > IAT at power up by 15.0 C after a minimum 28800 seconds soak and the time spent cranking the engine without starting is greater than 10.0 seconds with the LowFuelConditionDiag	See "P0116: Fail if power up ECT exceeds IAT by these values" in the Supporting tables section = False	Low Fuel Condition	ECT_Sensor_Ckt_FA IgnitionOffTimeValid TimeSinceEngineRunni ngValid = Not occurred = False = False ≥ -7 °C = False > 15.0 °C < 10.0 Seconds > -7 °C > 400 Seconds > 14.9 MPH	500 msec/sample Once per valid cold start	
Engine Coolant Temp Sensor Circuit Low	P0117	This DTC detects a short to ground in the ECT signal circuit or the ECT sensor.	ECT Resistance (@ 150°C)	< 45 Ohms (~ 150° C)			5 failures out of 6 samples 1 sec/sample Continuous	2 trips Type B
Engine Coolant Temp Sensor Circuit High	P0118	Circuit Continuity This DTC detects a short to high or open in the ECT signal circuit or the ECT sensor.	ECT Resistance (@ -60°C)	> 450000 Ohms (~ -60° C)	Engine run time Or IAT min		5 failures out of 6 samples 1 sec/sample Continuous	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
TPS1 Circuit		Detects a continuous or intermittent short or open in TPS1 circuit on the secondary processor but sensor is in range on the primary processor	Secondary TPS1 Voltage < or Secondary TPS1 Voltage >	0.325 4.75		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions No 5 V reference error No 5 V reference DTCs	19/39 counts or 14 counts continuous; 12.5 msec/count in the secondary processor	Type: A MIL: YES Trips:
Throttle Position Sensor Performance (naturally aspirated)		Determines if the Throttle Position Sensor input is stuck within the normal operating range	Filtered Throttle Model AND ABS(Measured Flow – Modeled Air Flow) Filtered	> 230 kPa/(g/s) > 12 grams/sec	Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together) No Active DTCs:		Calculation are performed every 12.5 msec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Throttle Position Sensor	P0121	Determines if the Throttle Position	See table "Supercharger Intake		Engine Speed	EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO	Continuous	Type B
Performance (supercharged)		Sensor input is stuck within the normal operating range	Flow Rationality Diagnostic Failure Matrix" for combinations of model failures that can set this DTC. Filtered Throttle Model	> 300 kPa/(g/s)	Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)	>= 450 RPM <= 8000 RPM > -7 Deg C < 125 Deg C > -7 Deg C < 125 Deg C	Calculation are performed every 12.5 msec	2 trips
			AND ABS(Measured Flow – Modeled Air Flow) Filtered AND	> 10 grams/sec		Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM		
			ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered	> 15.0 kPa > 15.0 kPa		Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and MAF Residual Weight Factor Based on MAF Estimate		
			AND ABS(Measured SCIAP – SCIAP Model 1) Filtered AND ABS(Measured SCIAP – SCIAP Model 2) Filtered	> 15.0 kPa		MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
			,	> 15.0 kPa				

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 1 multiplied by SCIAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 2 multiplied by SCIAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
					No Active DTCs:	See table "IFRD Residual Weighting Factors Supercharger Applications".		
						MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA		
						MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP		
						CylDeacSystemTFTKO IAT2_SensorFA IAT2_SensorCircuitFP		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						SCIAP_SensorCircuitF A SCIAP_SensorCircuitF P AmbientAirDefault_SC		
TPS1 Circuit Low	P0122	Detects a continuous or intermittent short or open in TPS1 circuit on both processors or just the primary processor	Primary TPS1 Voltage <	0.325		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions No 5 V reference error	79/159 counts; 57 counts continuous; 3.125 msec /count in the Primary processor	Type: A MIL:
			Secondary TPS1 Voltage <	0.325		No 5 V reference DTCs	19/39 counts or 14 counts continuous; 12.5 msec/count in the Secondary processor	YES Trips: 1
TPS1 Circuit High	P0123	Detects a continuous or intermittent short in TPS1 circuit on both processors or just the primary processor	Primary TPS1 Voltage >	4.75		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions No 5 V reference error	79/159 counts; 57 counts continuous; 3.125 msec /count in the Primary processor	Type: A MIL:
			Secondary TPS1 Voltage >	4.75		No 5 V reference DTCs	19/39 counts or 14 counts continuous; 12.5 msec/count in the Secondary processor	YES Trips: 1
Engine Coolant Temperature Below Stat Regulating Temperature	P0128	This DTC detects if the engine coolant temperature rises too slowly due to an ECT or Cooling system fault	Actual accumulated airflow is > predicted accumulated airflow before:	See "P0128: Maximum Accumulated Airflow for IAT and Start-up ECT conditions" in the Supporting tables section	No Active DTC's	MAP_SensorFA MAF_SensorFA TPS_Performance_FA TPS_FA TPS_ThrottleAuthority Defaulted	30 failures to set DTC 1 sec/sample	2 trips Type B
			Range #1 (Primary) ECT reaches 75.0 °C			IAT_SensorFA ECT_Sensor_Ckt_FA ECT_Sensor_Perf_FA	Once per ignition cycle	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			when IAT min is ≤ 54.5°C and ≥ 10.0°C. Range #2 (Alternate) ECT reaches 55.0 °C when IAT min is < 10.0°C and ≥ -		run time	VehicleSpeedSensor_F A 120 ≤ Eng Run Tme ≤ 1370 seconds Ethanol ≤ 87%		
			7.0°C.		Range #1 (Primary) Test ECT at start run Average Airflow Vehicle speed	≤ 70.0 °C ≥ 10.0 gps > 5 mph for at least 2.4 miles		
						≤ 50.0 °C ≥ 10.0 gps > 5 mph for at least 2.4 miles		
					Accumulated Airflow Adjustments 1) Max. airflow amount added when accumulating airflow is			
					Zero Airflow accumulated when airflow is With AFM active Airflow added to acculmulated is multiplyed by	70.0 gps < 17.0 gps		
					4) With Decel Fuel Cut Off active, acculmulated airflow is reduced by multiplying actual airflow by	50.00%		
						1.00 times		
Supercharger Inlet Absolute Pressure (SCIAP) Sensor Performance (Supercharged applications only)	IP012B	Determines if the Supercharger Inlet Absolute Pressure Sensor input is stuck within the normal operating range	See table "Supercharger Intake Flow Rationality Diagnostic Failure Matrix" for combinations of model failures that can set this DTC.		Engine Speed Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)		Continuous Calculation are performed every 12.5 msec	Type B 2 trips
			Filtered Throttle Model AND	> 300 kPa/(g/s)		< 0.00		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			ABS(Measured Flow – Modeled Air Flow) Filtered AND ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured SCIAP – SCIAP Model 1) Filtered AND ABS(Measured SCIAP – SCIAP Model 2) Filtered	> 10 grams/sec > 15.0 kPa > 15.0 kPa > 15.0 kPa > 15.0 kPa		Filtered Throttle Model multiplied by TPS Residual Weight Factor based on RPM Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and MAF Residual Weight Factor Based on MAF Estimate MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM and Boost RPM and Boost Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 1 multiplied by SCIAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost SCIAP Model 2 multiplied by SCIAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						See table "IFRD Residual Weighting Factors Supercharger Applications". MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO IAT2_SensorFA IAT2_SensorCircuitFP SCIAP_SensorCircuitFP ASCIAP_SensorCircuitFP AmbientAirDefault_SC		
Supercharger Inlet Absolute Pressure (SCIAP) Sensor Circuit Low (sensor with deadbands) (Supercharged applications only)		Detects a continuous short to low or open in either the signal circuit or the SCIAP sensor.	SCIAP Voltage	< 3.0 % of 5 Volt Range (0.2 Volts = 3.5 kPa)	Continuous		1 sample every 12.5 msec	Type B 2 trips
Supercharger Inlet Absolute Pressure (SCIAP) Sensor Circuit High (sensor with deadbands) (Supercharged applications only)		Detects an open sensor ground or continuous short to high in either the signal circuit or the SCIAP sensor.	SCIAP Voltage	> 90.0 % of 5 Volt Range (4.5 Volts = 115.3 kPa)	Continuous		320 failures out of 400 samples 1 sample every 12.5 msec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Circuit Low Voltage Bank 1 Sensor 1		This DTC determines if the O2 sensor circuit is shorted to low.		Oxygen Sensor signal is < 50 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control AIR Device Control AIR Device Control Low Fuel Condition Diag Equivalence Ratio Throttle Position Fuel Control State Closed Loop Active All Fuel Injectors for active Cylinders Fuel Condition Fuel State All of the above met for	Defaulted MAP_SensorFA AIR System FA Ethanol Composition Sensor FA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA = Not active = Totalie = Talse 0.992188 <= equiv. ratio <= 1.013672 3 % <= Throttle <= 70 % = Closed Loop = TRUE	380 failures out of 475 samples Frequency: Continuous in 100 milli - second loop	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Circuit High Voltage Bank 1 Sensor 1	P0132	This DTC determines if the O2 sensor circuit is shorted to high.			AIR intrusive test Fuel intrusive test Idle intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Equivalence Ratio Throttle Position Fuel Control State Fuel Control State Closed Loop Active All Fuel Injectors for active Cylinders Fuel State Fuel Condition All of the above met for	Defaulted MAP_SensorFA MAF_SensorFA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA = Not active = Total active = Not active = Total active	Continuous in 100	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
D2S Slow Response Bank 1 Sensor 1	P0133	This DTC determines if the O2 sensor response time is degraded.	The average response time is caluclated over the test time, and compared to the threshold. Refer to "P0133 - O2S Slow Response Bank 1 Sensor 1" Pass/Fail Threshold table in the Supporting Tables tab.		Bank 1 Sensor 1 DTC's not active System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Green O2S Condition O2 Heater on for Learned Htr resistance Engine Coolant IAT Engine Run Time Time since any AFM status change Time since Purge On to Off	AmbientAirDefault MAF_SensorFA EvapPurgeSolenoidCir cuit_FA EvapPlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA AIR System FA EthanolCompositionSe nsor_FA EngineMisfireDetected FA = P0131, P0132 or P0134 10.0 volts < system voltage< 18.0 volts = Not active = Valid > 40 seconds = Valid > 60 °C > -40 °C > 160 seconds > 0.0 seconds	Sample time is 70 seconds Frequency: Once per trip Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	2 trips Type E

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Circuit Insufficient Activity Bank 1 Sensor 1	P0134	This DTC determines if the O2 sensor circuit is open.		350 mvolts < Oxygen Sensor signal < 550 mvolts	Engine speed Fuel Baro Throttle Position Low Fuel Condition Diag Fuel Control State Closed Loop Active LTM fuel cell Transient Fuel Mass Baro Fuel Control State Fuel State Commanded Proportional Gain All of the above met for Time No Active DTC's System Voltage AFM Status Heater Warm-up delay Predicted Exhaust Temp (by location) Engine Run Time	= False = Closed Loop = TRUE = Enabled <= 100.0 mgrams = Not Defaulted not = Power Enrichment DFCO not active >= 0.0 % > 3.5 seconds TPS_ThrottleAuthority Defaulted MAF_SensorFA EthanolCompositionSe nsor_FA 10.0 volts < system voltage< 18.0 volts = All Cylinders active = Complete = Wamed Up > 300 seconds <= 92 % Ethanol	500 samples.	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Heater Performance Bank 1 Sensor 1	P0135	This DTC determines if the O2 sensor heater is functioning properly by monitoring the current through the heater circuit.	Measured Heater Current.	Measured Heater current < 0.3 amps -OR- Measured Heater current > 3.1 amps	System Voltage Heater Warm-up delay O2S Heater device control B1S1 O2S Heater Duty Cycle All of the above met for	10.0 volts < system voltage< 18.0 volts = Complete = Not active	8 failures out of 10 samples Frequency: 1 tests per trip 5 seconds delay between tests and 1 second execution rate	
O2S Circuit Low Voltage Bank 1 Sensor 2	P0137	This DTC determines if the O2 sensor circuit is shorted to low.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is < 50 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control AIR Device Control Low Fuel Condition Diag	Defaulted MAP_SensorFA AIR System FA Ethanol Composition Sensor FA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA = Not active = Not active = Not active = Not active 10.0 volts < system voltage< 18.0 volts = Not active = Talse 0.992188 <= equiv. ratio <= 1.013672 3 % <= Throttle <= 70 %	430 failures out of 540 samples Frequency: Continuous in 100 milli - second loop	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Fuel Condition	= TRUE Enabled (On) Ethanol <= 92% DFCO not active		
					All of the above met for Time	> 2.0 seconds		
O2S Circuit High Voltage Bank 1 Sensor 2	P0138	This DTC determines if the O2 sensor circuit is shorted to high.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is > 1050 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Equivalence Ratio Throttle Position Fuel Control State Fuel Control State Closed Loop Active All Fuel Injectors for active Cylinders Fuel State	= Not active = Not active = Not active 10.0 volts < system voltage< 18.0 volts = Not active = False 0.992188 <= equiv. ratio <= 1.013672 3.0 % <= Throttle <= 70.0 % = Closed Loop not = Power Enrichment = TRUE	Continuous in 100	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					All of the above met for Time	> 2 seconds		
O2 Sensor Slow Response Rich to Lean Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P013A	This DTC determines if the post catalyst O2 sensor has Slow Response in a predefined Rich to Lean voltages range during Rich to Lean transition. The diagnostic is an intrusive test which runs in a DFCO mode to achieve the required response.	The EWMA of the Post O2 sensor normalized integral value is greater than the threshold. OR The Accumulated mass air flow monitored during the Slow Response Test (between the upper and lower voltage thresholds) is greater than the airflow threshold.	1) B1S2 EWMA normalized integral value > 8.0 units OR 2) Accumulated air flow during slow rich to lean test > 49 grams (upper threshold is 450 mvolts and lower threshold is 150 mvolts)	B1S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Post fuel cell DTC's Passed	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAF_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013B, P013E, P013F, P2270 or P2271 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False = enabled = P2270 (and P2272 (if applicable)) = P013E (and P014A (if applicable)) er initiated pedal input).	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	1 trips Type A EWMA

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Slow Response	P013B	This DTC determines if the post	The EWMA of the Post O2 sensor	1) B1S2 EWMA normalized	No Active DTC's	TPS_ThrottleAuthority	Frequency:	1 trips Type A
O2 Sensor Slow Response Lean to Rich Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)		This DTC determines if the post catalyst O2 sensor has Slow Response in a predefined Lean to Rich voltages range during Lean to Rich transition. The diagnostic is an intrusive test which increases the delivered A/F ratio to achieve the required rich threshold.	The EWMA of the Post O2 sensor normalized integral value is greater than the threshold. OR The Accumulated mass air flow monitored during the Slow Response Test (between the lower and upper voltage thresholds) is greater than the airflow threshold.	integral value > 8.0 units OR 2) Accumulated air flow during slow lean to rich test > 75 grams (lower threshold is 350 mvolts and upper threshold is 650 mvolts)	B1S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Post fuel cell DTC's Passed DTC's Passed DTC's Passed	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013A, P013E, P013F, P2270 or P2271 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False	non-continuously. (Note that all other enable criteria must be met on	1 trips Type A EWMA

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
							when the vehicle is new and cannot be enabled in service	
O2 Sensor Slow Response Rich to Lean Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)		This DTC determines if the post catalyst O2 sensor has Slow Response in a predefined Rich to Lean voltages range during Rich to Lean transition. The diagnostic is an intrusive test which runs in a DFCO mode to achieve the required response.	OR The Accumulated mass air flow	integral value > 8.0 units OR 2) Accumulated air flow during slow rich to lean test > 49 grams (upper threshold is 450 mvolts and lower threshold is 150 mvolts)	B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Post fuel cell DTC's Passed	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAF_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013D, P014A, P014B, P2272 or P2273 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False = enabled = P2270 (and P2272 (if applicable)) = P013E (and P014A (if applicable)) er initiated pedal input).	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition	1 trips Type A EWMA

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
							cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2 Sensor Slow Response Lean to Rich Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)		This DTC determines if the post catalyst O2 sensor has Slow Response in a predefined Lean to Rich voltages range during Lean to Rich transition. The diagnostic is an intrusive test which increases the delivered A/F ratio to achieve the required rich threshold.	The EWMA of the Post O2 sensor normalized integral value is greater than the threshold. OR The Accumulated mass air flow monitored during the Slow Response Test (between the lower and upper voltage thresholds) is greater than the airflow threshold.	1) B1S2 EWMA normalized integral value > 8.0 units OR 2) Accumulated air flow during slow lean to rich test > 75 grams (lower threshold is 350 mvolts and upper threshold is 650 mvolts)	B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Post fuel cell DTC's Passed DTC's Passed DTC's Passed	IAT_SensorFA MAF_SensorFA MAP_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013C, P014A, P014B, P2272 or P2273 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = Rot Valid = False = enabled = P2270 (and P2272 (if applicable)) = P013E (and P014A (if applicable)) = P013A (and P013C (if applicable)) = P2271 (and P2273 (if	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on	1 trips Type A EWMA

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS		MIL ILLUM.
					DTC's Passed After above conditions are met: Fuel Enrich mode continued.	= P013F (and P014B (if applicable))	the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2 Sensor Delayed Response Rich to Lean Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P013E	This DTC determines if the post catalyst O2 sensor has an initial delayed response to an A/F change from Rich to Lean. The diagnostic is an intrusive test which runs in a DFCO mode to achieve the required response.	Post O2 sensor cannot go below the threshold voltage. AND The Accumulated mass air flow monitored during the Delayed Response Test is greater than the threshold.	1) Post O2S signal > 450 mvolts AND 2) Accumulated air flow during stuck rich test > 42 grams.	B1S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013A, P013B, P013F, P2270 or P2271 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow	2 trips Type B

							-	
COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS		MIL ILLUM.
O2 Sensor Delayed Response Lean to Rich Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)		catalyst O2 sensor has an initial delayed response to an A/F change from Lean to Rich. The diagnostic is an intrusive test which increases the delivered A/F ratio to achieve the required rich threshold.	Post O2 sensor cannot go above the threshold voltage. AND The Accumulated mass air flow monitored during the Delayed Response Test is greater than the threshold.	1) Post O2S signal < 350 mvolts AND 2) Accumulated air flow during lean to rich test > 200 grams.	B1S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag	TPS_ThrottleAuthority Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013A, P013B, P013E, P2270 or P2271 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False	(Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS		MIL ILLUM.
					DTC's Passed DTC's Passed DTC's Passed After above conditions are met: Fuel Enrich mode entered.	applicable)) = P013E (and P014A (if applicable)) = P013A (and P013C (if applicable)) = P2271 (and P2273 (if applicable))	grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2S Circuit Insufficient Activity Bank 1 Sensor 2	P0140	This DTC determines if the O2 sensor circuit is open.	Measure Oxygen Sensor Signal.	410 mvolts < Oxygen Sensor signal < 490 mvolts	System Voltage AFM Status Heater Warm-up delay Predicted Exhaust Temp (by location) Engine Run Time	= Wamed Up	740 samples.	2 trips Type B
O2S Heater Performance Bank 1 Sensor 2	P0141	This DTC determines if the O2 sensor heater is functioning properly by monitoring the current through the heater circuit.	Measured Heater Current.	Measured Heater current < 0.3 amps -OR- Measured Heater current > 2.9 amps		ECT_Sensor_FA 10.0 volts < system voltage< 18.0 volts = Complete	8 failures out of 10 samples Frequency: 1 tests per trip	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					O2S Heater device control B1S1 O2S Heater Duty Cycle All of the above met for Time		5 seconds delay between tests and 1 second execution rate	
O2 Sensor Delayed Response Rich to Lean Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P014A	This DTC determines if the post catalyst O2 sensor has an initial delayed response to an A/F change from Rich to Lean. The diagnostic is an intrusive test which runs in a DFCO mode to achieve the required response.	Post O2 sensor cannot go below the threshold voltage. AND The Accumulated mass air flow monitored during the Delayed Response Test is greater than the threshold.		B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAF_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected_FA EthanolCompositionSe nsor_FA P013C, P013D, P014B, P2272 or P2273 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False = enabled = P2270 and P2272 (if applicable) tiated pedal input).	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled	2 trips Type B

							•	-
COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
							when the vehicle is new and cannot be enabled in service	5
O2 Sensor Delayed Response Lean to Rich Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P014B	This DTC determines if the post catalyst O2 sensor has an initial delayed response to an A/F change from Lean to Rich. The diagnostic is an intrusive test which increases the delivered A/F ratio to achieve the required rich threshold.	Post O2 sensor cannot go above the threshold voltage. AND The Accumulated mass air flow monitored during the Delayed Response Test is greater than the threshold.	1) Post O2S signal < 350 mvolts AND 2) Accumulated air flow during Lean to Rich test > 200 grams.	B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Post fuel cell DTC's Passed DTC's Passed DTC's Passed	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAF_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected_FA EthanolCompositionSe nsor_FA P013C, P013D, P014A, P2272 or P2273 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False = enabled = P2270 (and P2272 (if applicable)) = P013E (and P013C (if applicable)) = P2271 (and P2273 (if applicable)) = P2271 (and P2273 (if applicable))	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
							cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2S Circuit Low Voltage Bank 2 Sensor 1	P0151	This DTC determines if the O2 sensor circuit is shorted to low.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is < 50 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag	Defaulted MAP_SensorFA AIR System FA Ethanol Composition Sensor FA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA = Not active = Talse 0.992188 <= equiv. ratio <= 1.013672 3 % <= Throttle <= 70 %	380 failures out of 475 samples Frequency: Continuous in 100 milli - second loop	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Fuel Condition Fuel State All of the above met for	= TRUE Enabled (On) Ethanol <= 92% DFCO not active > 2.0 seconds		
O2S Circuit High Voltage Bank 2 Sensor 1	P0152	This DTC determines if the O2 sensor circuit is shorted to high.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is > 1050 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Equivalence Ratio Throttle Position Fuel Control State Fuel Control State Closed Loop Active All Fuel Injectors for active Cylinders Fuel State	= Not active = Not active = Not active 10.0 volts < system voltage< 18.0 volts = Not active = False 0.992188 <= equiv. ratio <= 1.013672 0.0 % <= Throttle <= 70.0 % = Closed Loop not = Power Enrichment = TRUE	Continuous in 100	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					All of the above met for Time	> 2 seconds		
O2S Slow Response Bank 2 Sensor 1	P0153	This DTC determines if the O2 sensor response time is degraded.	The average response time is caluclated over the test time, and compared to the threshold. Refer to "P0153 - O2S Slow Response Bank 2 Sensor 1" Pass/Fail Threshold table in the Supporting Tables tab.		Bank 2 Sensor 1 DTC's not active System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Green O2S Condition O2 Heater on for Learned Htr resistance Engine Coolant IAT Engine Run Time Time since any AFM status	Defaulted MAP_SensorFA IAT_SensorFA ECT_SensorFA ECT_SensorFA ECT_SensorFA ECT_SensorFA EvapPurgeSolenoidCir cuit_FA EvapPurgeSolenoidCirc uit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA AIR System FA EthanolCompositionSe nsor_FA EngineMisfireDetected FA = P0151, P0152 or P0154 10.0 volts < system voltage < 18.0 volts = Not active = False = Not Valid >= 40 seconds = Valid > 60 °C > -40 °C > 160 seconds > 0.0 seconds	Sample time is 70 seconds Frequency: Once per trip Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Circuit Insufficient Activity Bank 2 Sensor 1	P0154	This DTC determines if the O2 sensor circuit is open.	Measure Oxygen Sensor Signal.	350 mvolts < Oxygen Sensor signal < 550 mvolts	Time since Purge Off to On change Purge duty cycle Engine airflow Engine speed Fuel Baro Throttle Position Low Fuel Condition Diag Fuel Control State Closed Loop Active LTM fuel cell Transient Fuel Mass Baro Fuel Control State Fuel State Commanded Proportional Gain All of the above met for Time No Active DTC's System Voltage AFM Status Heater Warm-up delay Predicted Exhaust Temp (by location) Engine Run Time	> 0.0 seconds >= 0 % duty cycle 20 gps <= engine airflow <= 55 gps 1200 <= RPM <= 3000 < 92 % Ethanol > 70 kpa >= 5 % = False = Closed Loop = TRUE = Enabled <= 100.0 mgrams = Not Defaulted not = Power Enrichment DFCO not active >= 0.0 % > 3.5 seconds TPS_ThrottleAuthority Defaulted MAF_SensorFA EthanolCompositionSe nsor_FA 10.0 volts < system voltage< 18.0 volts = All Cylinders active = Complete = Wamed Up > 300 seconds <= 92 % Ethanol	500 samples.	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Heater Performance Bank 2 Sensor 1	P0155	This DTC determines if the O2 sensor heater is functioning properly by monitoring the current through the heater circuit.	Measured Heater Current.	Measured Heater current < 0.3 amps -OR- Measured Heater current > 3.1 amps	System Voltage Heater Warm-up delay O2S Heater device control B1S1 O2S Heater Duty Cycle All of the above met for Time	10.0 volts < system voltage< 18.0 volts = Complete = Not active > zero > 120 seconds	8 failures out of 10 samples Frequency: 1 tests per trip 5 seconds delay between tests and 1 second execution rate	
O2S Circuit Low Voltage Bank 2 Sensor 2	P0157	This DTC determines if the O2 sensor circuit is shorted to low.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is < 50 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control AIR Device Control Low Fuel Condition Diag	Defaulted MAP_SensorFA AIR System FA Ethanol Composition Sensor FA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA = Not active = Not active = Not active = Not active 10.0 volts < system voltage< 18.0 volts = Not active = Talse 0.992188 <= equiv. ratio <= 1.013672 3 % <= Throttle <= 70 %	430 failures out of 540 samples Frequency: Continuous in 100 milli - second loop	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Fuel Condition	= TRUE Enabled (On) Ethanol <= 92% DFCO not active		
					All of the above met for Time	> 2.0 seconds		
O2S Circuit High Voltage Bank 2 Sensor 2	P0158	This DTC determines if the O2 sensor circuit is shorted to high.	Measure Oxygen Sensor Signal.	Oxygen Sensor signal is > 1050 mvolts	AIR intrusive test Fuel intrusive test Idle intrusive test Idle intrusive test EGR intrusive test System Voltage EGR Device Control Idle Device Control Fuel Device Control AIR Device Control Low Fuel Condition Diag Equivalence Ratio Throttle Position Fuel Control State Fuel Control State Closed Loop Active All Fuel Injectors for active Cylinders Fuel State	= Not active = Not active = Not active 10.0 volts < system voltage< 18.0 volts = Not active = False 0.992188 <= equiv. ratio <= 1.013672 3.0 % <= Throttle <= 70.0 % = Closed Loop not = Power Enrichment = TRUE	Continuous in 100	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					All of the above met for Time	> 2 seconds		
O2S Circuit Insufficient Activity Bank 2 Sensor 2	P0160	This DTC determines if the O2 sensor circuit is open.	Measure Oxygen Sensor Signal.	410 mvolts < Oxygen Sensor signal < 490 mvolts	System Voltage AFM Status Heater Warm-up delay Predicted Exhaust Temp (by location) Engine Run Time	Defaulted MAF_SensorFA EthanolCompositionSe nsor_FA 10.0 volts < system voltage< 18.0 volts = All Cylinders active = Complete = Wamed Up > 300 seconds <= 92 % Ethanol	590 failures out of 740 samples. Minimum of 0 delta TPS changes required to report fail. Delta TPS incremented when the TPS % change >= 0.0 % Frequency: Once per trip for post sensors 100msec loop	2 trips Type B
O2S Heater Performance Bank 2 Sensor 2	P0161	This DTC determines if the O2 sensor heater is functioning properly by monitoring the current through the heater circuit.	Measured Heater Current.	Measured Heater current < 0.3 amps -OR- Measured Heater current > 2.9 amps	System Voltage Heater Warm-up delay O2S Heater device control B1S1 O2S Heater Duty Cycle All of the above met for	= Not active	8 failures out of 10 samples Frequency: 1 tests per trip 5 seconds delay between tests and 1 second execution rate	
Fuel System Too Lean Bank 1	P0171	Determines if the fuel control system is in a lean condition, based on the filtered long-term fuel trim.	The filtered long-term fuel trim metric	≥ Long Term Trim Lean Table	BARO Coolant Temp MAP Inlet Air Temp MAF VSS Fuel Level	375 <rpm< 7000<br="">> 70 kPa -40 <°C< 150 10 <kpa< 255<br="">-20 <°C< 150 1.0 <g s=""> 510.0 < 83 mph > 10 % or if fuel sender is faulty</g></kpa<></rpm<>	> 100 ms Frequency: Continuous Development data indicates that the Fuel Adjustment System Diagnostic	Type B 2 Trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
COMPONENT/ STSTEM	CODE	DESCRIPTION	WALL UNCTION GRITERIA	disable conditions:	Engine speed Fuel Level EGR Flow Diag. Intrusi Catalyst Monitor Diag. Intrusi Device Control EVAP Diag. "tank pull down" por	> 25 seconds of data must accumulate on each trip, with at least 10 seconds of data in the current fuel trim cell before a pass or fail decision can be made. g Enabled Closed Loop Enabled and coolant temp > 39 and < 140 and > 0.3 liters of fuel consumed after a fuel fill event (Flex Fuel Only) rpm< 375 or rpm> 7000 < 10 % for at least 30 seconds we Test Active usive Test Active e Test Active active of the test Active of the	enabled during 93 % of the EPAIII drive cycle. This is also typical of real- world driving, however values will vary (higher or lower) based on the actual conditions present during the drive cycle.	
						FuelTankPressureSens orCircuit FA Ethanol Composition Sensor FA FuelInjectorCircuit_FA EngineMisfireDetected		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						EGRValvePerformance FA EGRValveCircuit_FA MAP_EngineVacuumSt atus AmbientAirDefault_NA		
Fuel System Too Rich Bank 1	P0172	Determines if the fuel control system is in a rich condition, based on the filtered long-term fuel trim metric. There are two different, yet related tests that are used to determine a Rich fault, they are Passive and Intrusive and are described below:			Coolant Temp MAP IAT MAF VSS Fuel Level Long Fuel Trim data accumulation:	10 <kpa< %="" -20="" 1.0="" 10="" 150="" 255="" 30="" 510.0="" 83="" <="" <g="" <°c<="" at="" for="" least="" mph="" s<="" seconds=""> 25 seconds of data must accumulate on each trip, with at least 10 seconds of data in the current fuel trim cell before a pass or fail decision can be made.</kpa<>		Type B 2 Trip(s)
						GLOSED LOOP Enabled and coolant temp > 39 and < 140 and > 0.3 liters of fuel consumed after a fuel fill event (Flex Fuel Only)		
		Passive Test: Non-purge cells are monitored to determine if a rich condition exists.	The filtered Non-Purge Long Term Fuel Trim metric	≤ Non Purge Rich Limit Table			> 100 ms Frequency: Continuous	
		Intrusive Test- When the Purge Long Term fuel trim metric is ≤ the Purge Rich Limit Table, Purge is ramped off to determine if excess purge vapor is the cause of the Rich condition. If the filtered Purge-on Long Term fuel trim > Purge Rich Limit Table the test passes without	If the Purge Long Term Fuel Trim metric AND The filtered Non-Purge Long Term Fuel Trim metric	≤ Non Purge Rich Limit Table		cannot be made. A passive decision cannot be made when Purge is enabled.	Fail determinations require that the Malfunction Criteria be satisfied for 3 out of 5 intrusive segments.	
		checking the Non-Purge Long			nent Definition -			
				disable	Engine speed	rpm< 375 or rpm> 7000	Development data	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						Fest Not Active ot Active on of the test Not Active ng decels on some IAC_SystemRPM_FA MAP_SensorFA MAF_SensorFA MAF_SensorFTKO AIR System FA EvapPurgeSolenoidCir cuit FA EvapFlowDuringNonPu rge FA EvapVentSolenoidCirc uit FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSens orCircuit FA Ethanol Composition Sensor FA FuelInjectorCircuit_FA EngineMisfireDetected FA EGRValvePerformance FA EGRValveCircuit_FA MAP_EngineVacuumSt atus AmbientAirDefault_NA	Fuel Adjustment System Diagnostic (FASD) is typically enabled during 93 % of the EPAIII drive cycle. This is also typical of real- world driving, however values will vary (higher or lower) based on the actual conditions present during the drive cycle.	
Fuel System Too Lean Bank 2	P0174	Determines if the fuel control system is in a lean condition, based on the filtered long-term fuel trim.	The filtered long-term fuel trim metric	≥ Long Term Trim Lean Table	BARO Coolant Temp MAP Inlet Air Temp MAF VSS Fuel Level	1.0 <g 510.0<br="" s<="">< 83 mph > 10 % or if fuel sender</g>	> 100 ms Frequency: Continuous Development data indicates that the Fuel Adjustment System Diagnostic (FASD) is typically.	Type B 2 Trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
COMPONENT/ SYSTEM	CODE	DESCRIPTION	MALFONCTION CRITERIA	disable conditions:	Long Fuel Trim data accumulation: Closed loop fuelin Long Fuel Trim enabled Engine speed Fuel Level EGR Flow Diag. Intrusi Catalyst Monitor Diag. Intrusi Catalyst Monitor Diag. Intrusi Device Control EVAP Diag. "tank pull down" pofuel trim metric is not updated duri	> 25 seconds of data must accumulate on each trip, with at least 10 seconds of data in the current fuel trim cell before a pass or fail decision can be made. g Enabled Closed Loop Enabled and coolant temp > 39 and < 140 and > 0.3 liters of fuel consumed after a fuel fill event (Flex Fuel Only) rpm< 375 or rpm> 7000 < 10 % for at least 30 seconds we Test Active usive Test Active e Test Active ecrtion of the test Active	enabled during 93 % of the EPAIII drive cycle. This is also typical of realworld driving, however values will vary (higher or lower) based on the actual conditions present during the drive cycle.	MIL ILLOM.
						EvapFlowDuringNonPurge FA EvapVentSolenoidCircuit FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSens orCircuit FA Ethanol Composition Sensor FA FuelInjectorCircuit_FA EngineMisfireDetected FA		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						EGRValvePerformance FA EGRValveCircuit_FA MAP_EngineVacuumSt atus AmbientAirDefault_NA		
Fuel System Too Rich Bank 2	el System Too Rich Bank P0175	Determines if the fuel control system is in a rich condition, based on the filtered long-term fuel trim metric. There are two different, yet related tests that are used to determine a Rich fault, they are Passive and Intrusive and are described below:			Coolant Temp MAP IAT MAF VSS Fuel Level Long Fuel Trim data	> 70 kPa -40 <°C< 150 10 <kpa< -20="" 1.0="" 150="" 255="" 510.0="" 83="" <="" <g="" <°c<="" mph="" s<=""> 10 % or if fuel sender is faulty > 25 seconds of data must accumulate on each trip, with at least 10 seconds of data in the current fuel trim cell before a pass or fail decision can be made. GENBER CONSTRUCTOR TO SUBJECT OF THE SU</kpa<>	> 100 ms Frequency: Continuous	Type B 2 Trip(s)
		Passive Test: Non-purge cells are monitored to determine if a rich condition exists.	The filtered Non-Purge Long Term Fuel Trim metric	≤ Non Purge Rich Limit Table				
		Intrusive Test- When the Purge Long Term fuel trim metric is ≤ the Purge Rich Limit Table, Purge is ramped off to determine if excess purge vapor is the cause of the Rich condition. If the filtered Purge-on Long Term fuel trim > Purge Rich Limit	If the Purge Long Term Fuel Trim metric AND The filtered Non-Purge Long Term Fuel Trim metric			cannot be made. A passive decision	Fail determinations require that the Malfunction Criteria be satisfied for 3 out of 5 intrusive segments.	
		Table the test passes without checking the Non-Purge Long		Segn	nent Definition -	•		
		raesand he wol-fude (oid		disable conditions:	Engine speed EGR Flow Diag. Intrusive Fuel Level	rpm< 375 or rpm> 7000 Test Not Active < 10 % for at least 30	Development data indicates that the Fuel Adjustment System Diagnostic	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Catalyst Monitor Diag. Intrusive Post O2 Diag. Intrusive Device Control Note Post Post Post Post Post Post Post Post	Test Not Active of Active ion of the test Not Active		
Injector 1	P0201	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 2	P0202	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Injector 3	P0203	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 4	P0204	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 5	P0205	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 6	P0206	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 7	P0207	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
Injector 8	P0208	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control ciruit do not match		Powertrain Relay Voltage within range and stable according to Enable Conditions Engine Running	11 volts ≤ Voltage ≤ 18 volts greater than 1 seconds	8 failures out of 10 samples 250 ms /sample Continuous	Type B 2 trips
TPS2 Circuit	P0220	Detects a continuous or intermittent short or open in TPS2 circuit on the secondary processor but sensor is in range on the primary processor	Secondary TPS2 Voltage <	0.25		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	19/39 counts or 14 counts continuous; 12.5 msec/count in the Secondary processor	Туре:
			or Secondary TPS2 Voltage >	4.59		No 5 V reference error No 5 V reference DTCs		A MIL: YES Trips: 1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
TPS2 Circuit Low	P0222	Detects a continuous or intermittent short in TPS2 circuit on both processors or just the primary processor	Primary TPS2 Voltage <	0.25		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	79/159 counts; 57 counts continuous; 3.125 msec /count in the Primary processor	Type:
						No 5 V reference error		A MIL:
			Secondary TPS2 Voltage <	0.25		No 5 V reference DTCs	19/39 counts or 14 counts continuous; 12.5 msec/count in the Secondary	YES Trips: 1
TPS2 Circuit High	P0223	Detects a continuous or intermittent short or open in TPS2 circuit on both processors or just the primary processor	Primary TPS2 Voltage >	4.59		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions No 5 V reference error	79/159 counts; 57 counts continuous; 3.125 msec /count in the Primary processor	Type: A MIL:
			Secondary TPS2 Voltage >	4.59		No 5 V reference DTCs	19/39 counts or 14 counts continuous; 12.5 msec/count in the Secondary processor	YES Trips: 1
Fuel Pump Primary Circuit (ODM)	P0230	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage Engine Speed	11 volts ≤ Voltage ≤ 18 volts ≥ 0 RPM	8 failures out of 10 samples 250 ms /sample Continuous	2 trips Type B
Supercharger Intercooler Coolant Pump Control Circuit (Supercharged applications only)	P023A	Electrical Integrity of Supercharger Intercooler Coolant Pump Control Circuitry			Ignition Voltage Ignition Voltage Engine Speed	>= 11.00 Volts <= 18.00 Volts > 0	1 failures out of 0 samples 1 sample every 250 msec	Type B 2 trips
Random Misfire Detected	P0300	These DTC's will determine if a	Deceleration index vs.	(>Idle SCD AND	Engine Run Time	> 2 crankshaft	Emission	2 Trips
Cylinder 1 Misfire Detected	P0301	random or a cylinder specific misfire is occurring by monitoring crankshaft velocity	Engine Speed Vs Engine load	> Idle SCD ddt Tables) OR (>SCD Delta AND	ECT		Exceedence = (5) failed 200 rev blocks of 16.	Туре В
Cylinder 2 Misfire Detected			Deceleration index calculation is tailored to specific veh. Tables	> SCD Delta ddt Tables) OR	If ECT at startup	< -7°C	Failure reported with (1)	(Mil Flashes with Catalyst Damaging
Cylinder 3 Misfire Detected	P0302		used are 1st tables encountered that are not max of range	(>Idle Cyl Mode AND > Idle Cyl Mode ddt Tables)			Exceedence in 1st (16) 200 rev block	Misfire)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Cylinder 4 Misfire Detected Cylinder 5 Misfire Detected Cylinder 6 Misfire Detected Cylinder 7 Misfire Detected Cylinder 8 Misfire Detected	P0303 P0304 P0305 P0306		speed/load point is where all tables are max of range point. see Algorithm Description Document for additional details.	OR (>Cyl Mode AND > Cyl Mode ddt Tables) OR (>Rev Mode Table) OR (> AFM Table in Cyl Deact mode)	ECT System Voltage + Throttle delta - Throttle delta	< 13.0°C 9.00 <volts<18.00 < 75.00% per 25 ms < 75.00% per 25 ms</volts<18.00 	or (4) Exceedences thereafter. 1st Catalyst Exceedence = (1) 200 rev block as data supports for catalyst damage.	
	P0307		Threshold Misfire Percent Catalyst Damage	≥ 1.00% P0300 ≥ 1.04% emission >"Catalyst Damaging Misfire Percentage" Table, except 1 cyl out below 10.625% misfire below 1200 rom and 20% load.				
					Engine Speed	375 < rpm < (Engine Speed Limit) - 400 Engine speed limit is a function of inputs like Gear and temperature typical Engine Speed Limit = 5300 rpm	Continuous	
				disable conditions:	No active DTCs:		4 cycle delay	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					P0315 & engine speed Fuel Level Low Cam and Crank Sensors Misfire requests TCC unlock Fuel System Status Active Fuel Management Undetectable engine speed and engine load region	CrankSensorFaultActiv e CrankIntakeCamCorrel ationFA CrankExhaustCamCorrelationFA CrankCamCorrelationT FTKO AnyCamPhaser_FA AnyCamPhaser_TFTK O > 1000 rpm LowFuelConditionDiag nostic in sync with each other Not honored because Transmission in hot mode ≠ Fuel Cut Transition in progress invalid speed load range in decel index tables > 8192 rpm		
					Below zero torque (except CARB approved 3000 rpm to redline triangle.) Below zero torque: TPS (area) Veh Speed EGR Intrusive test	<" Zero torque engine load" in Supporting Tables tab ≤ 0% > 48 KPH	4 cycle delay 4 cycle delay 0 cycle delay 4 cycle delay 7 cycle delay	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Driveline Ring Filter active After a low level misfire, another misfire may not be detectable until driveline ringing ceases. If no ringing seen, stop filter early. Filter Driveline ring: Stop filter early:			
					Abnormal engine speed oscillations: (Rough road etc) Off Idle, number of consecutive decelerating cylinders after accelerating,: (Number of decels can vary with misfire detection equation) TPS Engine Speed Veh Speed	4 engine cycles after misfire 3 Engine cycles after		
					SCD Cyl Mode Rev Mode Rev Mode Monitor ABS ABS/TCS system RoughRoad	> 3 % > 950 rpm > 5 kph = 4 consecutive cyls = 4 consecutive cyls 1 (1=Yes) not active not detected (wheel sensor)		
Crankshaft Position System Variation Not Learned	P0315	Monitor for valid crankshaft error compensation factors	Sum of Compensation factors	≥ 4.0040 OR ≤ 3.9960	OBD Manufacturer Enable Counter		0.50 seconds Frequency Continuous 100 msec	1 Trips Type A

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Knock Sensor (KS) Module Performance (E38/E67 controllers only)	P0324	This diagnostic will detect a failed internal ECM component associated with knock control	All Cylinder's Actual Signal	> 4.50 Volts ≤ 0.20 Volts	Engine Speed Engine Air Flow No Active DTC's Engine Speed	> 50 mg/cylinder KS_Ckt_Perf_B1B2_F A ≥ 400 RPM	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit	P0325	This diagnostic checks for an	All Cylinder's Actual Signals	> 4.0 Volts	Engine Air Flow No Active DTC's Diagnostic Enabled (1 = Enabled)	> 50 mg/cylinder KS_Ckt_Perf_B1B2_F A	50 Failures out of	Type: B
Bank 1 (E38/E67 controllers)		open in the knock sensor circuit	Gated Low Pass Filter Voltage	or < 1.24 Volts	Engine Speed ECT Enginer Run Time No Active DTC's Power Take-Off Disabled	≥ 400 RPM ≥ -40 deg. C ≥ 2 seconds KS_Ckt_Perf_B1B2_F A Disabled	63 Samples 100 msec rate	MIL: YES Trips: 2
Knock Sensor (KS) Circuit Bank 1 (E37 controller)	P0325	This diagnostic checks for an open in the knock sensor circuit	Gated FFT Output	< OpenCircuitThresh See Supporting Tables for OpenCircuitThresh	Diagnostic Enabled (1 = Enabled) Engine Speed ECT Enginer Run Time No Active DTC's Power Take-Off		50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Performance Bank 1 (Common algorithm on all three controllers)	P0326	This diagnostic checks for an overactive knock sensor caused by excessive knock or noisy engine components	Knock Fast Retard (spark degrees) >	> (FastRtdMax + 6.0 degrees - 3.5) degrees spark See Supporting Tables for FastRtdMax			31 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Engine Speed MAP No Active DTC's Power Take-Off Disabled	≥ 400 RPM ≥ 10 kPa TPS_ThrottleAuthority Defaulted Disabled		
Knock Sensor (KS) Circuit Low Bank 1 (E38/E67 controller)	P0327	This diagnostic checks for an out of range low knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	> 2.86 Volts < 1.48 Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 2 seconds < 256 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit Low Bank 1 (E37 controller)	P0327	This diagnostic checks for an out of range low knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	< ShortLowThresh * (5 / 65,535) Volts < 2 * [ShortLowThresh * (5 / 65,535) - 2.5] Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 1 seconds < 150 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
				See Supporting Tables for ShortLowThresh				
Knock Sensor (KS) Circuit High Bank 1 (E38/E67 controller)	P0328	This diagnostic checks for an out of range high knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	< 2.02 Volts > 3.76 Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 2 seconds < 256 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit High Bank 1 (E37 controller)	P0328	This diagnostic checks for an out of range high knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	> ShortHiThresh * (5 / 65,535) Volts > 2 * [ShortLowThresh * (5 / 65,535) - 2.5] Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 1 seconds < 150 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
				See Supporting Tables for ShortHiThresh				

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Knock Sensor (KS) Circuit Bank 2 (E38/E67 controller)	P0330	This diagnostic checks for an open in the knock sensor circuit	Gated Low Pass Filter Voltage	> 4.0 Volts or < 1.24 Volts	Diagnostic Enabled (1 = Enabled) Engine Speed ECT Enginer Run Time No Active DTC's Power Take-Off Disabled	= 1 ≥ 400 RPM ≥ -40 deg. C ≥ 2 seconds KS_Ckt_Perf_B1B2_F A Disabled	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit Bank 2 (E37 controller)	P0330	This diagnostic checks for an open in the knock sensor circuit	Gated FFT Output	< OpenCircuitThresh See Supporting Tables for OpenCircuitThresh	Diagnostic Enabled (1 = Enabled) Engine Speed ECT Enginer Run Time No Active DTC's Power Take-Off	= 1 ≥ 1800 RPM ≥ -40 deg. C ≥ 1 seconds KS_Ckt_Perf_B1B2_F A Disabled	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit Low Bank 2 (E38/E67 controller)	P0332	This diagnostic checks for an out of range low knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	> 2.86 Volts < 1.48 Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 2 seconds < 256 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit Low Bank 2 (E37 controller)	P0332	This diagnostic checks for an out of range low knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	< ShortLowThresh * (5 / 65,535) Volts < 2 * [ShortLowThresh * (5 / 65,535) - 2.5] Volts See Supporting Tables for ShortLowThresh	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 1 seconds < 150 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Knock Sensor (KS) Circuit High Bank 2 (E38/E67 controller)	P0333	This diagnostic checks for an out of range high knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	< 2.02 Volts > 3.76 Volts	ECT Enginer Run Time Engine Oil Temp No Active DTC's	≥ -40 deg. C ≥ 2 seconds < 256 deg. C EngOilModeledTempV alid	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Knock Sensor (KS) Circuit High Bank 2 (E37 controller)	P0333	This diagnostic checks for an out of range high knock sensor signal	Sensor Input Signal Line or Sensor Return Signal Line	> ShortHiThresh * (5 / 65,535) Volts > 2 * [ShortLowThresh * (5 / 65,535) - 2.5] Volts See Supporting Tables for ShortHiThresh	ECT Enginer Run Time Engine Oil Temp No Active DTC's		50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
Crankshaft Position (CKP) Sensor A Circuit	P0335	Determines if a fault exists with the crank position sensor signal	Engine-Cranking Crankshaft Test: Time since last crankshaft position sensor pulse received	>= 4.0 seconds	Engine-Cranking Crankshaft Test: Starter engaged AND (cam pulses being received OR (DTC P0101 AND DTC P0102 AND DTC P0103 AND Engine Air Flow	= FALSE = FALSE = FALSE > 3.0 grams/second))	Engine-Cranking Crankshaft Test: Continuous every 100 msec	Type A 1 trips
			Time-Based Crankshaft Test: No crankshaft pulses received Event-Based Crankshaft Test: No crankshaft pulses received	>= 0.1 seconds	Time-Based Crankshaft Test: Engine is Running Starter is not engaged No DTC Active: Event-Based Crankshaft Test: Engine is Running OR Starter is engaged No DTC Active:	5VoltReferenceA_FA	Time-Based Crankshaft Test: Continuous every 12.5 msec Event-Based Crankshaft Test: 2 failures out of 10 samples	
						5VoltReferenceB_FA P0340 P0341	One sample per engine revolution	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Crankshaft Position (CKP) Sensor A Performance	P0336	Determines if a performance fault exists with the crank position sensor signal	Crank Re-synchronization Test: Time in which 25 or more crank re synchronizations occur Time-Based Crankshaft Test:	< 20.0 seconds	Crank Re-synchronization Test: Engine Air Flow Cam-based engine speed No DTC Active: Time-Based Crankshaft Test:	>= 3.0 grams/second > 450 RPM 5VoltReferenceB_FA P0335	Crank Re- synchronization Test: Continuous every 250 msec Time-Based	Type A 1 trips
			No crankshaft synchronization gap found Engine Start Test during Crank:	>= 0.4 seconds	Engine is Running Starter is not engaged No DTC Active: Engine Start Test during Crank:	5VoltReferenceB_FA	Crankshaft Test: Continuous every 12.5 msec Engine Start Test during Crank:	
			Time since starter engaged without detecting crankshaft synchronization gap	>= 1.5 seconds	Starter engaged AND (cam pulses being received OR (DTC P0101 AND DTC P0102 AND DTC P0103 AND Engine Air Flow	= FALSE = FALSE = FALSE > 3.0 grams/second))	Continuous every 100 msec	
			Event-Based Crankshaft Test: Crank Pulses received in one engine revolution OR Crank Pulses received in one engine revolution	< 53 > 63	Event-Based Crankshaft Test: Engine is Running OR Starter is engaged No DTC Active:	5VoltReferenceA_FA 5VoltReferenceB_FA	Event-Based Crankshaft Test: 8 failures out of 10 samples	
				7 00		P0340 P0341	One sample per engine revolution	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Camshaft Position (CMP) Sensor Circuit Bank 1 Sensor A	P0340	Determines if a fault exists with the cam position bank 1 sensor A signal	Engine Cranking Camshaft Test:		Engine Cranking Camshaft Test:		Engine Cranking Camshaft Test:	Type B 2 trips
			Time since last camshaft position sensor pulse received OR Time that starter has been engaged without a camshaft sensor pulse	>= 5.5 seconds >= 4.0 seconds	Starter engaged AND (cam pulses being received OR (DTC P0101 AND DTC P0102 AND DTC P0103 AND Engine Air Flow	= FALSE = FALSE = FALSE > 3.0 grams/second))	Continuous every 100 msec	
			Time-Based Camshaft Test: Fewer than 4 camshaft pulses received in a time	> 3.0 seconds	Time-Based Camshaft Test: Engine is Running Starter is not engaged No DTC Active:	5VoltReferenceA_FA	Time-Based Camshaft Test: Continuous every 100 msec	
			Fast Event-Based Camshaft Test: No camshaft pulses received during first 24 MEDRES events (There are 24 MEDRES events per engine cycle)		Fast Event-Based Camshaft Test: Crankshaft is synchronized Starter must be engaged to enable the diagnostic, but the diagnostic will not disable when the starter is disengaged		Fast Event-Based Camshaft Test: Continuous every MEDRES event	
					No DTC Active:	5VoltReferenceA_FA 5VoltReferenceB_FA CrankSensor_FA		
			Slow Event-Based Camshaft Test: The number of camshaft pulses received during 100 engine cycles	= 0	Slow Event-Based Camshaft Test: Crankshaft is synchronized No DTC Active:	5VoltReferenceA_FA 5VoltReferenceB_FA CrankSensor_FA	Slow Event-Based Camshaft Test: 8 failures out of 10 samples Continuous every engine cycle	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Camshaft Position (CMP) Sensor Performance Bank 1 Sensor A	P0341	Determines if a performance fault exists with the cam position bank 1 sensor A signal	Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:	Type B 2 trips
			The number of camshaft pulses received during first 24 MEDRES events is less than 2 or greater than 8		Crankshaft is synchronized Starter must be engaged to enable the diagnostic, but the diagnostic will not disable when the starter is disengaged		Continuous every MEDRES event	
			(There are 24 MEDRES events per engine cycle)		No DTC Active:	5VoltReferenceA_FA 5VoltReferenceB_FA CrankSensor_FA		
			Slow Event-Based Camshaft Test: The number of camshaft pulses received during 100 engine cycles		Slow Event-Based Camshaft Test: Crankshaft is synchronized No DTC Active:		Slow Event-Based Camshaft Test: 8 failures out of 10 samples	
			AND	< 398 > 402		5VoltReferenceB_FA CrankSensor_FA	Continuous every engine cycle	
IGNITION CONTROL #1 CIRCUIT	P0351	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 1 (Cylinders 1 and 4 for V6 with waste spark)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #2 CIRCUIT	P0352	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 2 (Cylinders 2 and 5 for V6 with waste spark)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage		50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
IGNITION CONTROL #3 CIRCUIT	P0353	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 3 (Cylinders 3 and 6 for V6 with waste spark)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #4 CIRCUIT	P0354	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 4 (if applicable)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #5 CIRCUIT	P0355	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 5 (if applicable)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #6 CIRCUIT	P0356	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 6 (if applicable)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #7 CIRCUIT	P0357	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 7 (if applicable)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2
IGNITION CONTROL #8 CIRCUIT	P0358	This diagnostic checks the circuit for electrical integrity during operation. Monitors EST for Cylinder 8 (if applicable)	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Engine running Ignition Voltage	> 6.00 Volts	50 Failures out of 63 Samples 100 msec rate	Type: B MIL: YES Trips: 2

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
Camshaft Position (CMP) Gensor Circuit Bank 1 Gensor B	P0365	Determines if a fault exists with the cam position bank 1 sensor B signal	Engine Cranking Camshaft Test:		Engine Cranking Camshaft Test:		Engine Cranking Camshaft Test:	Type B 2 trips
For applications with a ank 1 sensor B CMP ensor)			Time since last camshaft position sensor pulse received OR	>= 5.5 seconds	Starter engaged AND (cam pulses being received		Continuous every 100 msec	
			Time that starter has been engaged without a camshaft sensor pulse	>= 4.0 seconds	OR (DTC P0101 AND DTC P0102 AND DTC P0103 AND Engine Air Flow	= FALSE = FALSE = FALSE > 3.0 grams/second))		
			Time-Based Camshaft Test:		Time-Based Camshaft Test:		Time-Based Camshaft Test:	
			Fewer than 4 camshaft pulses received in a time	> 3.0 seconds	Engine is Running Starter is not engaged No DTC Active:	5VoltReferenceA_FA	Continuous every 100 msec	
			Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:	
			No camshaft pulses received during first 10 MEDRES events		Crankshaft is synchronized Starter must be engaged to		Continuous every MEDRES event	
			(There are 10 MEDRES events per engine cycle)		enable the diagnostic, but the diagnostic will not disable when the starter is disengaged			
					No DTC Active:	5VoltReferenceA_FA		
						5VoltReferenceB_FA CrankSensor_FA		
			Slow Event-Based Camshaft Test:		Slow Event-Based Camshaft Test:		Slow Event-Based Camshaft Test:	
			The number of camshaft pulses received during 100 engine cycles		Crankshaft is synchronized No DTC Active:	5VoltReferenceA_FA	8 failures out of 10 samples	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
				= 0		5VoltReferenceB_FA CrankSensor_FA	Continuous every engine cycle	
Camshaft Position (CMP) Sensor Performance Bank 1 Sensor B (For applications with a	P0366	Determines if a performance fault exists with the cam position bank 1 sensor B signal	Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:		Fast Event-Based Camshaft Test:	Type B 2 trips
bank 1 sensor B CMP sensor)			The number of camshaft pulses received during first 10 MEDRES events is less than 3 or greater than 11		Crankshaft is synchronized Starter must be engaged to enable the diagnostic, but the diagnostic will not disable when the starter is disengaged		Continuous every MEDRES event	
			(There are 10 MEDRES events per engine cycle)		No DTC Active:	5VoltReferenceA_FA 5VoltReferenceB_FA CrankSensor_FA		
			Slow Event-Based Camshaft Test: The number of camshaft pulses received during 100 engine cycles		Slow Event-Based Camshaft Test: Crankshaft is synchronized No DTC Active:	5VoltReferenceA_FA	Slow Event-Based Camshaft Test: 8 failures out of 10 samples	
			AND	< 398 > 402		5VoltReferenceB_FA CrankSensor_FA	Continuous every engine cycle	
Secondary AIR Incorrect Airflow Single Bank Systems (For applications with AIR)	P0411	Detects an insufficient flow condition This test is run during Phase 1 (AIR pump commanded On, Valve commanded Open)		> 5.0 kPa < -3.4 kPa	Inlet Air Temp Coolant Temp Engine off time	> 5.0 deg C. < 60.0 deg C. > 3600.0 seconds > 10.0 OR < 18.0 Volts	Phase 1 Conditional test weight > 4.0 seconds Total 'String Length' accumulation time	2 trip(s) Type B
		Leaks downstream of the valve are detected via an evaluation of both pressure error and average pressure "String Length" (SL) – a term that represents the absolute oressure delta accumulated every	while the Average String Length	> 0.0 kPa < 0.0 kPa > SL Threshold Bank 1 Table		rpm < 5600 and > 6400 ated by <u>multiplying the</u> tors eight Factor eight Factor		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
		6.25ms, then averaged over the			Phase 1 Ambient Temp Te	est Weight Factor		
		duration of the test. Low SL values		disable	MAP	< 20 kPa for 2 seconds		
		are indicative of downstream leaks or blockages.		conditions:		> 5000 RPM > 50 gm/s for 3 seconds AIRSystemPressureSe	Frequency: Once per trip when AIR pump commanded	
						nsor FA AIRValveControlCircuit FA AIRPumpControlCircuit FA MAF_SensorFA MAP_SensorFA IAT_SensorFA ECT_SensorFA ECT_SensorFA CatalystSysEfficiencyL 0B1_FA CatalystSysEfficiencyL 0B2_FA ControllerProcessorPer f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA IgnitionOutputDriver_F A FuelInjectorCircuit_FA	On	
Secondary AIR Solenoid Control Circuit (For applications with AIR)	P0412		The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		System Voltage	> 10.0 Volts < 18.0 Volts	50 failures out of 63 samples 250 ms loop Continuous	2 trip(s) Type B
Secondary AIR Pump Control Circuit (For applications with AIR)	P0418	circuit for electrical integrity	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		System Voltage	> 10.0 Volts < 18.0 Volts	50 failures out of 63 samples 250 ms loop Continuous	2 trip(s) Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Catalyst System Low Efficiency Bank 1	P0420	Oxygen Storage	Normalized Ratio OSC Value (EWMA filtered)	< 0.350	<u>Valid Idle Period</u>	<u>Criteria</u>	1 test attempted per valid idle period Minimum of 1 test per trip Maximum of 8 tests per trip Frequency: Fueling Related: 12.5 ms OSC Measurements:	Type A 1 Trip(s)
		The catalyst washcoat contains			Throttle Position Vehicle Speed Engine speed Engine run time	< 2.00 Kph > 975 RPM for a minimum of 19 seconds since end of last idle period.	100 ms Temp Prediction:	
					Intrusive test(s): Fueltrim Post O2 EVAP EGR RunCrank Voltage Ethanol Estimation	< 255 yet completed for the s Met Criteria et and the Not Active -20 < ° C < 250 Not Active > 10.90 Volts NOT in Progress 45 < ° C < 129		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Idle Time before going intrusive is	< 50 Seconds		
					Short Term Fuel Trim Predicted catalyst temp > MinCat¹ Closed loop fuelin PRNDL Idle Stable Criteria:: Must I MAF Predicted catalyst temperature Engine Fueling Criteria at Beg The following fueling related r Number of pre-O2 switches Short Term Fuel Trim Avg Rapid Step Response (RSR) If the difference between curren Maximum of 24 RSR tests to det Green Converter De This is part of the check for the 0 The diagnostic will not be enable Predicted catalyst temperatur PTO Not Act General Ena DTC's Not S MAF_Senson AmbientAirDefa IAT_SensorCire ECT_Sensor O2S_Bank_1_Sen O2S_Bank_1_Sen O2S_Bank_2_Sen FuelTrimSystem FuelTrimSystem FuelTrimSystem EngineMisfireDete EvapPurgeSolenoid IAC_SystemRP EGRValvePerform EGRValvePerform EGRValvePerform EGRValvePerform EGRValveCircu	< 2 Kph and the throttle position < 2.00 % as identified in the Valid Idle Period Criteria section. 0.90 < ST FT < 1.10		
					CamSensor_ CrankSensorFau TPS_Performan EnginePowerLi VehicleSpeedSer	ItActive ce_FA mited		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Catalyst System Low Efficiency Bank 2	P0430	, 0	Normalized Ratio OSC Value (EWMA filtered)	< 0.350	<u>Valid Idle Period</u>	<u>Criteria</u>	1 test attempted per valid idle period Minimum of 1 test per trip Maximum of 8 tests per trip Frequency: Fueling Related: 12.5 ms OSC Measurements: 100 ms	Type A 1 Trip(s)
							Temp Prediction:	
		The catalyst washcoat contains Co The Catalyst Monitoring Test is do			Throttle Position Vehicle Speed			
					Engine speed Engine run time	> 975 RPM for a minimum of 19 seconds since end of last idle period.		
					Tests attempted this trip The catalyst diagnostic has not Catalyst Idle Condition General Enable me Green Converter Delay Induction Air Intrusive test(s): Fueltrim Post O2 EVAP EGR RunCrank Voltage Ethanol Estimation	MinimumEngineRunTi me, This is a function of Coolant Temperture, please see Supporting Tables < 255 yet completed for the s Met Criteria et and the Not Active > 10.90 Volts NOT in Progress 45 < ° C < 129		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Short Term Fuel Trim Predicted catalyst temp > MinCat ⁻ Closed loop fuelin PRNDL Idle Stable Criteria :: Must P	< 2 Kph and the throttle		
Evaporative Emission	P0442	This DTC will detect a small leak	The total delta from peak		Fuel Level	10 % ≤ Percent ≤ 90 %	Once per trip,	1 trip

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
(EVAP) System Small Leak Detected		(≥ 0.020") in the EVAP system between the fuel fill cap and the purge solenoid. The engine off natural vacuum method (EONV) is used. EONV is an evaporative system leak detection diagnostic that runs when the vehicle is shut off when enable conditions are met. Prior to sealing the system and performing the diagnostic, the fuel volatility is analyzed. In an open system (Canister Vent Solenoid [CVS] open) high volatility fuel creates enough flow to generate a measurable pressure differential relative to atmospheric. After the volatility check, the vent solenoid will close. After the vent is closed, typically a build up of pressure from the hot soak begins (phase-1). The pressure typically will peak and then begin to decrease as the fuel cools. When the pressure drops (-62.27) Pa from peak pressure, the vent is then opened for 60 seconds to normalize the system pressure. The vent is again closed to begin the vacuum portion of the test (phase-2). As the fuel temperature continues to fall, a vacuum will begin forming. The vacuum will continue until it reaches a vacuum peak. When the pressure rises 62.27 Pa from vacuum peak, the test then completes. If the key is turned on while the diagnostic test is in progress, the test will abort.	pressure to peak vacuum during the test is normalized against a calibration pressure threshold table that is based upon fuel level and ambient temperature. (See P0442: EONV Pressure Threshold Table on Supporting Tables Tab). The normalized value is calculated by the following equation: 1 - (peak pressure - peak vacuum)/pressure threshold. The normalized value is entered into EWMA (with 0= perfect pass and 1= perfect fail). When EWMA is , the DTC light is illuminated. The DTC light can be turned off if the EWMA is and stays below the EWMA fail threshold for 2 additional consecutive trips.	(EWMA Fail Threshold) ≤ 0.35 (EWMA Re-Pass Threshold)	Drive Time Drive length ECT Baro Odometer Time since last complete test if normalized result and EWMA is passing OR Time since last complete test if normalized result or EWMA is failing Estimated ambient temperature at end of drive Estimate of Ambient Air Temperature Valid Conditions for Estimate of Am 1. Cold Start Startup delta deg C (ECT-IAT) OR 2. Short Soak and Previous EAT Previous time since engine off OR 3. Not a Cold Start and Previous Previous time since engine off AND Must expire Estimate of Ambient Temperature Valid Conditioning Time. Please see "P0442: Estimate of Ambient Temperature Valid Conditioning Time. Please see "P0442: Estimate of Ambient Temperature Valid Conditioning Time In Supporting Tables Tab. 4. Not a Cold Start and Previous	bient Air Temperature ≤ 8 °C T Valid ≤ 7200 seconds s EAT Valid and 7200 seconds < Time < 25200 seconds Vehicle Speed ≥ 19.3 mph AND Mass Air Flow ≥ 0 g/sec	during hot soak (up to 2400 sec.). No more than 2 unsuccessful attempts between completed tests.	Type A EWMA Average run length is 7 under normal conditions Run length is 2 to 6 trips after code clear or non-volatile reset

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Previous time since engine off AND Must expire maximum value in Estimate of Ambient Temperature Valid Conditioning Time. Please see "P0442: Estimate of Ambient Temperature Valid Conditioning Time" in Supporting Tables Tab.	Vehicle Speed ≥ 19.3		
					OR 5. Long Soak Previous time since engine off	≥ 25200 seconds		
				Abort Conditions:	High Fuel Volatility During the volatility phase, pressure in the fuel tank is integrated vs. time. If the integrated pressure is			
					then test aborts and unsuccessful attempts is incremented.			
					Vacuum Refueling Detected See P0454 Fault Code for informa algorithm. OR Fuel Level Refueling Detected See P0464 Fault Code for informa	 		
					refueling. OR 4. Vacuum Out of Range and No See P0451 Fault Code for informa out of range and P0464 Fault Cod	Refueling tion on vacuum sensor		
					level refueling. OR 5. Vacuum Out of Range and Re See P0451 Fault Code for informa out of range and P0464 Fault Cod level refueling.	tion on vacuum sensor		
					OR 6. Vent Valve Override Failed Device control using an off-board tool to control the vent solenoid,			
					cannot exceed during the EONV test	0.50 seconds		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					OR 7. Key up during EONV test No active DTCs:	FuelLevelDataFault MAF_SensorFA ECT_Sensor_FA IAT_SensorFA VehicleSpeedSensor_F A IgnitionOffTimeValid AmbientAirDefault P0443 P0446 P0449 P0452 P0453 P0455 P0496		
Evaporative Emission (EVAP) Canister Purge Solenoid Valve Circuit (ODM)	P0443	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage		20 failures out of 25 samples 250 ms /sample Continuous with solenoid operation	2 trips Type B
Evaporative Emission (EVAP) Vent System Performance	P0446	This DTC will determine if a restriction is present in the vent solenoid, vent filler, vent hose or EVAP canister. This test runs with normal purge and vent valve is open.	Vent Restriction Prep Test: Vented Vacuum or Vented Vacuum for 60 seconds Vent Restriction Test: Tank Vacuum for 5 seconds BEFORE Purge Volume	< -623 Pa > 1245 Pa > 2989 Pa	Startup ECT BARO No active DTCs:	11 volts ≤ Voltage ≤ 18 volts 4 °C ≤ Temperature ≤ 30 °C ≤ 35 °C ≥ 70 kPa MAP_SensorFA TPS_FA VehicleSpeedSensor_F A IAT_SensorCircuitFA ECT_Sensor_FA	Once per Cold Start Time is dependent on driving conditions	2 trips Type B
			2 liters of fuel must be consumed after setting the DTC active the first time to set the DTC active the				before test abort is 1000 seconds	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			second time.			P0449 P0452 P0453 P0454		
Evaporative Emission (EVAP) Vent Solenoid Control Circuit (ODM)		This DTC checks the circuit for electrical integrity during operation. If the P0449 is active, an intrusive test is performed with the vent solenoid commanded closed for 15 seconds.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage	11 volts ≤ Voltage ≤ 18 volts	20 failures out of 25 samples 250 ms / sample Continuous with solenoid operation	2 trips Type B
Fuel Tank Pressure (FTP) Sensor Circuit Performance	P0451	The DTC will be set if the fuel tank vacuum sensor is out of range when it tries to re-zero prior to the phase-1 or phase-2 portions of the engine-off natural vacuum small leak test.	is compared to a window about the nominal sensor voltage offset	0.2 volts 0.2 volts	This test will execute whenever the engine-off natural vacuum small leak test (P0442) executes		This test is executed during an engine-off natural vacuum small leak test. The number of times that it executes can range from zero to two per engine-off period. The length of the test is determined by the refueling rationality test, which can take up to 600 seconds to complete.	1 trip Type A EWMA Average run length: 6 Run length is 2 trips after code clear or non- volatile reset
			When EWMA is , the DTC light is illuminated. The DTC light can be turned off if the EWMA is	> 0.73 (EWMA Fail Threshold) ≤ 0.40 (EWMA Re-Pass Threshold)				

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			threshold for 2 additional consecutive trips.					
Fuel Tank Pressure (FTP) Sensor Circuit Low Voltage	P0452	This DTC will detect a fuel tank pressure sensor signal that is too low out of range.	Fuel tank pressure sensor signal The normal operating range of the fuel tank pressure sensor is 0.5 volts (~1245 Pa) to 4.5 volts (~ - 3736 Pa).	< 0.15 volts (3 % of Vref or ~ 1681 Pa)	Time delay after sensor power up for sensor warm-up ECM State ≠ crank		80 failures out of 100 samples 100 ms / sample Continuous	2 trips Type B
Fuel Tank Pressure (FTP) Sensor Circuit High Voltage	P0453	This DTC will detect a fuel tank pressure sensor signal that is too high out of range.		> 4.85 volts (97% of Vref or ~ - 4172 Pa)	Time delay after sensor power up for sensor warm-up ECM State ≠ crank	is 0.10 seconds	80 failures out of 100 samples 100 ms / sample Continuous	2 trips Type B
Fuel Tank Pressure (FTP) Sensor Circuit Intermittent		This DTC will detect intermittent tank vacuum sensor signals that would have caused the engine-off natural vacuum small leak test to abort due to an apparent refueling event.	If an abrupt change in tank vacuum is detected the engine-off natural vacuum test is aborted due to an apparent refueling event. Subsequent to the abort, a refueling rationality test is executed to confirm that a refueling event occurred. If a refueling is confirmed, then the test sample is considered passing. Otherwise, the sample is considered failing indicating an intermittent signal problem.		This test will execute whenever the engine-off natural vacuum small leak test (P0442) executes		The length of the test is determined by the refueling rationally attention once per engine-off period. The length of the test is determined by the refueling rationallity test, which can take up to 600 seconds to complete.	1 trips Type A
			The abrupt change is defined as a change in vacuum: in the span of 1.0 seconds. A refueling event is confirmed if the fuel level has a persistent change	112 Pa < Vacuum < 249 Pa			The test will report a failure if 1 out of 3 samples are failures.	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			-	of 10 %				
			for 30 seconds.					
Evaporative Emission (EVAP) System Large Leak Detected	P0455	This DTC will detect a weak vacuum condition (large leak or purge blockage) in the EVAP system. Purge valve is controlled (to allow purge flow) and vent valve is commanded closed.	Purge volume BEFORE Tank vacuum 2 liters of fuel must be consumed after setting the DTC active the first time to set the DTC active the second time. Weak Vacuum Follow-up Test (fuel cap replacement test) Weak Vacuum Test failed. Passes if tank vacuum Note: Weak Vacuum Follow-up Test can only report a pass.		Startup IAT Temperature Startup ECT Weak Vacuum Follow-up Test This test can run following a weak vacuum failure or on a hot restart.	≤ 8 °C ≤ 1000 seconds 4 °C ≤ Temperature ≤ 30 °C	Once per cold start Time is dependent on driving conditions Maximum time before test abort is 1000 seconds Weak Vacuum Follow-up Test With large leak detected, the follow-up test is limited to 1300 seconds. Once the MIL is on, the follow-up test runs indefinitely.	
Fuel Level Sensor 1 Performance	P0461	This DTC will detect a fuel sender stuck in range in the primary fuel tank.	Delta Fuel Volume change over an accumulated 150 miles.	< 3 liters	Engine Running No active DTCs:	VehicleSpeedSensor_F A	250 ms / sample Continuous	2 trips Type B
Fuel Level Sensor 1	P0461	This DTC will detect a fuel sender		1	Engine Running		250 ms / sample	2 trips Type B
Performance (For use on vehicles with		stuck in range in the primary fuel tank.			No active DTCs:	VehicleSpeedSensor_F A		
electric transfer pump dual					nains in an Unreadable Range too L	ong		
fuel tanks)			If fuel volume in primary tank is AND Fuel volume in secondary tank and remains in this condition for					

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			OR					
			OIX	During fuel tra	anfer			
			During fuel transfer, when the	Banning rater are	Transfer Pump is commanded on			
			enable conditions are met, at					
			least 3.0 liters of fuel will be		No device control for the transfer			
			transferred from the secondary		pump			
			tank and 3.0 liters of fuel will be		Fuel Volume in Secondary Tank			
			transfered into the primary tank			< 10 liters		
			within 0 seconds. There is a short		Vehicle Speed	< 0 kph		
			delay of 0 seconds to allow fuel					
			slash to settle hefore the fail timer					
			OR		1			
			Dalta Firel Malines albanas	Distance Traveled without a Prin	nary Fuel Level Change			
			Delta Fuel Volume change over an accumulated 150 miles.	< 3 liters				
Fuel Level Sensor 1	P0461	This DTC will detect a fuel sender	Over all accumulated 130 miles.		Engine Running		250 ms / sample	2 trips Type B
Performance		stuck in range in the primary fuel			gg		200 mo / campio	po . , po 2
· onemanes		tank.			No active DTCs:	VehicleSpeedSensor F	Continuous	
(For use on vehicles with						Α		
mechanical transfer pump				Level in Primary Tank Remains in a	an Unreadable Range too Long			
dual fuel tanks)			If fuel volume in primary tank is	>= 1024.0 liters				
			AND	0.011				
			Fuel volume in secondary tank					
			and remains in this condition for	124 miles				
				124 miles				
			OR					
			OK	After Refuel E	vent			
			If the secondary fuel volume		The shutdown primary tank			
			changes by 20.0 liters from		volume + 3.0 liters must be			
			engine "off" to engine "on" the					
			primary volume should change by			< 1024.0 liters		
			3.0 liters.					
			OR					
				Distance Traveled without a Prin	nary Fuel Level Change	_		
			Delta Fuel Volume change	< 3 liters				
5 - 11 10 10 1	D0 400	This DTO III date to feel and to	over an accumulated 150 miles.		D. (O. al.) Valla	44 - 11 - 41 / 11 440	400 (-1)	0 12 T D
Fuel Level Sensor 1 Circuit	P0462	This DTC will detect a fuel sender	Fuel level Sender % of 5V range	< 10 %	Run/Crank Voltage	11 volts ≤ Voltage ≤ 18		2 trips Type B
Low Voltage		stuck out of range low in the		< 10 %		volts	225 samples	
		primary fuel tank.					100 ms / sample Continuous	
Fuel Level Sensor 1 Circuit	P0463	This DTC will detect a fuel sender	Fuel level Sender % of 5V range		Run/Crank Voltage	11 volts ≤ Voltage ≤ 18		2 trips Type R
High Voltage		stuck out ofrange high in the	23.13.13. 23.1301 /0 01 0 V Turigo	> 60 %	January Control	volts	225 samples	, , , , , , , ,
701490		primary fuel tank.				1.0.00	100 ms / sample	
							Continuous	
Fuel Level Sensor 1 Circuit	P0464	This DTC will detect intermittent	If a change in fuel level is		This test will execute whenever		This test is	1 trip Type A
Intermittent		fuel level sensor signals that	detected, the engine-off natural		the engine-off natural vacuum		executed during an	
1	l	would have caused the engine-off	vacuum test is aborted due to an		small leak test (P0442) executes		engine-off natural	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
		natural vacuum small leak test to abort due to an apparent re- fueling event.	apparent refueling event. Subsequent to the abort, a refueling rationality test is executed to confirm that an actual refueling event occurred. If a refueling event is confirmed, then the test sample is considered				vacuum small leak test. The test can only execute up to once per engine- off period.	
			passing. Otherwise, the sample is considered failing indicating an intermittent signal problem.				The length of the test is determined by the refueling rationality test, which can take up to 600 seconds to complete.	
			An intermintant change in fuel level is defined as: The fuel level changes and does not remain for 30 seconds during a 600 second refueling rationality test.	> 10 %			The test will report a failure if 1 out of 3 samples are failures.	
Cooling Fan 1 Relay Control	P0480	This DTC checks the circuit for	The ECM detects that the		Run/Crank Voltage	11 volts ≤ Voltage ≤ 18		2 trips Type B
Circuit (ODM) (Not used on systems with mechanical fans)		electrical integrity during operation.	commanded state of the driver and the actual state of the control circuit do not match.		Engine Speed	volts ≥ 400 RPM	25 samples 100 ms / sample Continuous with fan operation	
Cooling Fan 1 Relay Control Circuit (ODM) (Not used on systems with mechanical fans)	P0481	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage Engine Speed	11 volts ≤ Voltage ≤ 18 volts ≥ 400 RPM	20 failures out of 25 samples 100 ms / sample Continuous with fan operation	2 trips Type B
Evaporative Emission (EVAP) System Flow During	P0496	This DTC will determine if the purge solenoid is leaking to	Tank Vacuum	> 2491 Pa	Fuel Level	10% ≤ Percent ≤ 90%	Once per cold start	2 trips Type B
Non-Purge		engine manifold vacuum. This test will run with the purge valve closed and the vent valve	for 5 seconds BEFORE Test time	S S		11 volts ≤ Voltage ≤ 18 volts ≥ 70 kPa 4 °C ≤ Temperature ≤	Cold start: max time is 1000 seconds	
		closed.		Leak Test Engine Vacuum Test Time (Cold Start) as a Function of Fuel Level table" in Supporting Tables Tab.	Startup ECT Engine Off Time	30 °C ≤ 35 °C ≥ 28800.0 seconds		
					No active DTCs:	MAP_SensorFA		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
	Doros	No articita in the TOCC since it	TOOS Day Sand	- 00 DDM		TPS_FA VehicleSpeedSensor_F A IAT_SensorCircuitFA ECT_Sensor_FA AmbientAirDefault EnginePowerLimited P0443 P0449 P0452 P0453 P0454		Town D
Transmission Output Speed Sensor (TOSS) (Manual trans only)	IP0502	No activity in the TOSS circuit	TOSS Raw Speed	<= 60 RPM Disable Conditions:	Maximum Engine Torque Minimum Engine Torque in Park or Neutral Minimum Engine Torque in Park or Neutral Minimum Engine Torque in Park or Neutral Minimum Engine Speed when there is a Brake DTC Minimum Engine Speed when there is no Brake DTC Maximum Engine Speed Minimum Transmission Fluid Temperature Disable P0502 if PTO Active Maximum Engine Speed Minimum Ignition Voltage Minimum Ignition Voltage Disables on these Pcodes:	<= 8192 N-m >= 68 N-m <= 8192 N-m >= 90 N-m >= 90 N-m >= 1500 RPM >= 1500 RPM >= 6500 RPM >= -40 ° C. = 0 Boolean <= 7500 RPM >= 5 sec <= 18 volts >= 11 volts EngineTorqureInaccura te MAF_SensorTFTKO MAP_SensorTFTKO P0503		Type B 2 trips
Transmission Output Speed Sensor (TOSS) (Manual trans only)	P0503	TOSS Signal Intermittent	Loop-to-Loop change in TOSS	>= 350 RPM	Loop-to-Loop Input Speed Change Raw Output Speed	<= 500 RPM >= 300 RPM	>= 4.5 sec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Time since Range Change Time for Positive Output Speed Change Time above raw Output Speed Time since 4WD Range change Maximum Ignition Voltage Minimum Ignition Voltage Minimum Engine Torque Minimum Engine Speed Maximum TCC slip Minimum TCC slip Minimum Throttle position Minimum Vehicle speed Minimum Throttle position Minimum Vehicle speed	<= 150 RPM >= 2 sec >= 6 sec >= 2 sec >= 2 sec >= 6 sec >= 18 volts >= 11 volts >= 75 N-m >= 1000 RPM <= 4096 RPM >= -4096 RPM >= 8% TPS >= 10 km/hr >= 8.0 % >= 10 km/hr		
Low Engine Speed Idle System	P0506	This DTC will determine if a low idle exists	Filtered Engine Speed Error filter coefficient	< 91.00 rpm 0.003	Ignition voltage Time since gear change Time since a TCC mode change IAT Vehicle speed Commanded RPM delta Idle time	> 70 kPa > 60 °C ≥ 60 sec 18 ≥ volts ≥ 11 ≥ 3 sec > 3 sec > -20 °C ≤ 2 mph	Diagnostic runs in every 12.5 ms loop Diagnostic reports pass or fail in 10 sec once all enable conds are met	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS		MIL ILLUM.
High Engine Speed Idle System	P0507	This DTC will determine if a high idle exists	Filtered Engine Speed Error filter coefficient	> -182.00 rpm 0.003	Vehicle speed Commanded RPM delta Idle time No active DTCs	> 70 kPa > 60 °C ≥ 60 sec 18 ≥ volts ≥ 11 ≥ 3 sec > 3 sec > -20 °C ≤ 2 mph	Diagnostic runs in every 12.5 ms loop Diagnostic reports pass or fail in 10 sec once all enable conds are met	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Engine Oil Pressure (EOP) Sensor Performance	P0521	Determines if the Engine Oil Pressure (EOP) Sensor is stuck or biased in range	To pass a currently failing test: The filtered difference between measured EOP and predicted EOP (a function of engine speed and engine oil temp.):	> 0 kPa and (< -50 kPa OR > 50 kPa) > 0 kPa and (> -47 kPa AND < 47 kPa)	Diagnostic enabled/disabled Oil Pressure Sensor In Use Filtered engine oil pressure test weighting (function of engine speed, engine oil temperature, predicted oil pressure, and engine load stability). Details on Supporting Tables Tab (P0521 Section) No active DTC's	EGRValvePerformance _FA IAT_SensorCircuitFA EvapFlowDuringNonPu rge_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA FuelInjectorCircuit_FA MAF_SensorFA EngineMisfireDetected _FA IgnitionOutputDriver_F A TPS_Performance_FA VehicleSpeedSensor_F A TPS_Performance_FA VehicleSpeedSensor_F A ClchToT_TypedABC Enabled Present >= 0 ratio Fault bundles: CrankSensorFA ECT_Sensor_FA MAF_SensorFA IAT_SensorFA IAT_SensorFA IAT_SensorFA	Performed every 100 msec	2 trip(s) Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						EOPCircuit_FA		
Engine Oil Pressure (EOP) Sensor Circuit Low Voltage	P0522	Determines if the Engine Oil Pressure (EOP) Sensor circuit voltage is too low	(Engine Oil Pressure Sensor Circuit Voltage) / 5 Volts	< 5 percent	Engine Running Ignition Voltage Sensor Present Diagnostic enabled/disabled	= True <= 18.0 V and >= 11.0 No Enabled	50 failures out of 63 samples Performed every 100 msec	2 trip(s) Type B
Engine Oil Pressure (EOP) Sensor Circuit High Voltage	P0523	Determines if the Engine Oil Pressure (EOP) Sensor circuit voltage is too high	(Engine Oil Pressure Sensor Circuit Voltage) / 5	> 85 percent	Engine Running Ignition Voltage Sensor Present Diagnostic enabled/disabled	= True <= 18.0 V and >= 11.0 No Enabled	204 failures out of 255 samples Performed every 100 msec	2 trip(s) Type B
Brake Booster Pressure Sensor Performance (AFM applications only)	P0556	Determines if the Brake Booster Vacuum Sensor is stuck or skewed within the normal operating range by comparing the engine vacuum to the brake booster vacuum when the engine is producing a large amount of vacuum	Engine vs brake booster vacuum sensor values are compared when % throttle < value for a time period. When throttle once again > calibrated value, min and max vacuum sensor values are normalized and subtracted from a 1st order lag filter value of 1. A properly operating vacuum sensor would have a normalized result of 1 or greater. If the normalized result is greater than 1 it is considered 1. The 1st order lag filter value would be 0 in a passing system.		Throttle Area (with idle included) for time period of Ignition Voltage BrkBoostVacDiff For time period of AND Vacuum Delta Diagnostic enabled/disabled No active DTC's	<= 1 Percent for > 3 seconds <= 18.0 V and >= 11.0 > 0 kPa >= 0.2 Seconds >= 6.0 kPa Enabled Fault bundles: MAP_SensorFA TPS_FA	Pass counter incremented when enable conditions are met, pass achieved when counter >= 8 Performed every 100 msec	2 trip(s) Type B
			1 st order lag fail threshold 1 st order lag re-pass threshold	> 0.5 < 0.6				
Brake Booster Pressure Sensor Circuit Low Voltage (AFM applications only)	P0557	Determines if the Brake Booster Pressure Sensor circuit voltage is too low	(Brake Booster Pressure Sensor Voltage) / 5 Volts	< 2.0 percent	Brake booster diagnostic enabled/disabled Brake booster pressure sensor present	Enabled Yes	320 failures out of 400 samples Performed every 12.5 msec	2 trip(s) Type B
Brake Booster Pressure Sensor Circuit High Voltage	P0558	Determines if the Brake Booster Pressure Sensor circuit voltage is	(Brake Booster Pressure Sensor Voltage) / 5 Volts		Brake booster diagnostic enabled/disabled		2000 failures out of 2400 samples	2 trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
(AFM applications only)		too high		> 87.0 percent	Brake booster pressure sensor present	Enabled Yes	Performed every 12.5 msec	Туре В
Cruise Control Mutil- Functon Switch Circuit	P0564	Detect when cruise control multi- function switch circuit (analog) voltage is in an illegal range Detect when cruise control multi- function switch circuit (analog)	Cruise Control analog circuit voltage must be in an "illegal range" for greater than a calibratable period of time for cruise switch states are received over serial data Cruise Control analog circuit voltage must be in an "illegal	Cruise switch data integrity is equal to "illegal range"		Switch architecture CeCRZG_e_CAN is CAN, CAN based switch diagnostic 1 is TRUE, general switch diagnostic enable 1 is TRUF Switch architecture CeCRZG_e_CAN is	fail continuously for greater than 0.750 seconds	C MIL: NO Trips: 1 "Special Type C"
Cruise Control Resume	P0567	voltage is in an illegal range Detects a failure of the cruise	range" for greater than a calibratable period of time for cruise switches hardwired to the ECM Cruise Control Resume switch			ANALOG, general switch diagnostic enable 1 is TRUE	seconds fail continuously	Type:
Circuit	P0307	resume switch in a continously applied state	remains applied for greater than a calibratable period of time for architecture where cruise switch states are received over serial data			CeCRZG_e_CAN is CAN, CAN based switch diagnostic 1 is TRUE, general switch diagnostic enable 1 is TRUF	for greater than 90.000 seconds	C "Special Type
			Cruise Control Resume switch remains applied for greater than a calibratable period of time for cruise switches hardwired to the ECM			CeCRZG_e_CAN is	fail continuously for greater than 90.000 seconds	C" MIL: NO Trips: 1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Cruise Control Set Circuit	P0568	Detects a failure of the cruise set switch in a continously applied state	Cruise Control Set switch remains applied for greater than a calibratable period of time for architecture where cruise switch states are received over serial data			Switch architecture CeCRZG_e_CAN is CAN, CAN based switch diagnostic 1 is TRUE, general switch diagnostic enable 1 is TRUE	fail continuously for greater than 90.000 seconds	Type: C
			Cruise Control Set switch remains applied for greater than a calibratable period of time for cruise switches hardwired to the ECM			Switch architecture CeCRZG_e_CAN is ANALOG or DISCRETE, general switch diagnostic enable 1 is TRUF	fail continuously for greater than 90.000 seconds	"Special Type C" MIL: NO Trips:
Cruise Control Input Circuit	P0575	Detects rolling count or protection value errors in Cruise Control Switch Status serial data signal	If x of y rolling count / protection value faults occur, disable cruise for duration of fault			Switch architecture CeCRZG_e_CAN is CAN, DTC enable cal 1 is TRUE	10/16 counts	Type: C "Special Type C" MIL: NO Trips:
Control Module Read Only Memory (ROM)	P0601	This DTC will be stored if the calibration check sum is incorrect	Output state invalid		PCM State	= crank or run	Diagnostic runs continuously in the background Diagnostic reports a fault if 1 failure occurs on the first pass. Diagnostic reports a fault if 5 failures occur after the first pass is complete.	Type A 1 trips
Control Module Not Programmed	P0602	This DTC will be stored if the PCM is a service PCM that has not been programmed.	Output state invalid		PCM State	= crank or run PCM is identified	Diagnostic runs at powerup	Type A 1 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						through calibration as a Service PCM		
Control Module Long Term Memory Reset	P0603	Non-volatile memory checksum error at controller power-up	Checksum at power-up does not match checksum at power-down				Diagnostic runs at powerup Diagnostic reports a fault if 1 failure occurs	Type A 1 trips
ECM RAM Failure	P0604	Indicates that the ECM is unable to correctly read data from or write data to RAM	Primary processor data pattern written doesn't match the pattern read for a count >	1 count if found on first memory scan. 5counts if found on subsequent scans.			Will finish first memory scan within 30 seconds at all engine conditions - diagnostic runs continuously	Type:
			Secondary processor battery backed RAM failed checksum twice for original values at power up and the defaulted values				2. Completion at intilization, <500 ms	А
			Secondary processor copy of calibration area to RAM failed for a count > Secondary Processor data pattern written doesn't match the pattern read consecutive times	2counts			3. Completion at intilization, <500 ms 4. Will finish within 30 seconds at all engine conditions.	MIL: YES
			5. Secondary Processor TPS or APPS minimum learned values fail compliment check continuously				5. 0.0625sec continuous	Trips:
ECM Processor	P0606	Indicates that the ECM has detected an internal processor integrity fault						Type: A MIL: YES Trips:
Processor Performance Check - Throttle limiting Fault			When drag is active Secondary processor detects Primary's calculated throttle position is greater > than Secondary Processor calculated Throttle Position by	0.00%		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	1. 0.1875sec in the Secondary Processor	11105.

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			Secondary processor detects	8.41%				
			Primary's calculated throttle					l
			position is greater > than					l
			Secondary's calculated Throttle					l
			Position when driver is					l
			commanding the throttle from					l
			APP hv					i
			Secondary processor detects	38.25%				i
			Primary's calculated throttle					ł
			position is greater > than					i
			Secondary's calculated Throttle					i
			Position when reduce engine nower is active by					i
2. Processor			Software tasks on the Primary	0.0625sec continuous		Run/crank voltage or	2. 0.0625sec	i
Performance Check - ETC			Processor in the 12.5 ms loop			Powertrain relay	continuous	ĺ
software is not executed or			were not executed or were not			voltage > 6.00 and		l
it is not executed in in			executed in the correct order.			reduced power is false,		l
proper order						else the failure will be		l
·						reported for all		l
						conditions		l
			Software tasks on the Primary	0.1250sec continuous			0.1250sec	l
			Processor in the 25 ms loop were				continuous	l
			not executed or were not					i
			executed in the correct order. Software tasks on the Primary	0.2500sec continuous			0.2500sec	l
			Processor in the 50 ms loop were	0.2500sec continuous			continuous	l
			not executed or were not				Continuous	l
			executed in the correct order.					l
			Software tasks on the Primary	0.5000sec continuous			0.5000sec	l
			Processor in the 100 ms loop				continuous	l
			were not executed or were not					l
			executed in the correct order.					ĺ
			Software tasks on the Primary	1.2500sec continuous			1.2500sec	l
			Processor in the 250 ms loop				continuous	ĺ
			were not executed or were not					l
			executed in the correct order.	360.0000sec continuous			360.0000sec	l
			The first completion of the RAM diagnostic on the Primary	360.0000sec continuous			continuous	i
			Processor was completed > the				Continuous	l
			amount of time					i
			amount of time					ĺ
			The first completion of the ROM	360.0000sec continuous			360.0000sec	l
			diagnostic on the Primary				continuous	ĺ
			Processor was completed > the					l
			amount of time					ĺ
								1
			Software tasks on the Secondary	Two Consecutive Loops (12.5ms			25 ms	ĺ
			Processor were not executed or	* 2) 25ms				i
			were not executed in the correct					ĺ
			order.	I	I	I		1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
3. Processor Performance Check - SPI Failure			Loss or invalid message of SPI communication from the Secondary Processor at initialization detected by the Primary Processor or loss or invalid message of SPI communication from the Secondary Processor after a valid message was recieved by the Drimary Processor at the Primary Processor at initialization detected by the Secondary Processor or loss or invalid message of SPI communication from the Primary Processor at initialization detected by the Secondary Processor or loss or invalid message of SPI communication from the Primary Processor after a valid message was recieved by the Secondary Processor			Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	In the primary processor, 159/400 counts intermittent or 15 counts continuous; 39 counts continuous @ initialization In the secondary processor 0.4750sec at initialization, 0.1750sec continuous or 20/200 intermittent.	
Processor Performance Check - Secondary Processor state of health (Main)			Primary processor check of the secondary processor by verifing the hardware line toggle between the two processors toggles within the threshold values	9.3750sec and 15.6250sec		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	9counts continuous at initialization or 9 counts continuous; 12.5 msec /count in the Primary processor	
Processor Performance Check - Primary Processor Learn Corruption Fault			Primary Processor TPS or APPS minimum learned values fail compliment check				0.1000sec continuous	
Processor Performance Check - Primary Processor Clock Fault			The ocillator failed for the Primary processor where the clock is outside the threshold	27.85 kHz and 37.68 kHz		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	100ms continuous	
9. Processor Performance Check - Secondary Processor ALU Fault			The secondary check of the ALU failed to compute the expected result			Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	12.5ms continuous	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Processor Performance Check - Secondary Processor Register Configuration Fault			Secondary processor failed configuration check of the registers.			Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	12.5ms continuous	
11. Processor Performance Check - Secondary Processor StackFault			Secondary processor checks stack beginning and end point for pattern written at initialization .			conditions Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	12.5ms continuous	
12. Processor Performance Check - Secondary Processor MAIN Processor Fault			Secondary processor check that the Primary processor hasen't set a select combination of internal processor faults			conditions Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	12.5ms continuous	
13. Processor Performance Check - Primary Processor ALU Fault			The primary processor check of the ALU failed to compute the expected result	Two Consecutive Times		conditions	12.5ms continuous	
14. Processor Performance Check - Primary Processor Register Configuration Fault			Primary processor failed configuration check of the registers.				12.5ms continuous	
Vehicle Speed Output Circuit 2 (ODM)	P0609	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage	11 volts ≤ Voltage ≤ 18 volts	100 failures out of 120 samples 250 ms /sample Continuous with solenoid operation	2 trips Type B
Control Module Accelerator Pedal Position (APP) System Performance	P060D	Verify that the indicated accelerator pedal position calculation is correct	PPS sensor switch fault - When the APP sensor 2 is shorted to ground, the sensor value is >	41		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	Consecutive checks within 200ms or 2/2 counts; 175msec/count	Туре:
						Engine Running TPS minimum learn is not active No Pedal related errors or diagnostic faults.		A MIL: YES

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			Difference between primary processor indicated accelerator pedal position and secondary indicated accelerator pedal position is >	5		Diagnostic is enabled (Only applicable for Legacy accelerator pedals) 2. Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions MAIN Pedal Sync Error is FALSE	counts continuous; 12.5 msec/count in	Trips:
						Engine Running TPS minimum learn is not active Diagnostic is enabled (Only applicable for Legacy accelerator pedals)		
Control Module EEPROM Error	P062F	Indicates that the NVM Error flag has not been cleared	Last EEPROM write did not complete		Ignition State	= unlock/accesory, run, or crank	1 test failure Diagnostic runs once at powerup	Type A 1 trips
5 Volt Reference #1 Circuit	P0641	Detects a continuous or intermittent short on th 5 volt reference circuit #1	Primary Processor Vref1 < Primary Processor Vref1 >	4.432 4.659		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	Primary processor	Type: A
			Secondary Processor Vref1 < Secondary Processor Vref1 >	4.432 4.659			19/39 counts or 15 counts continuous; 12.5 msec/count in Secondary processor	MIL: YES Trips: 1
Malfunction Indicator Lamp (MIL) Control Circuit (ODM)	P0650	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage Remote Vehicle Start is not active	11 volts ≤ Voltage ≤ 18 volts	20 failures out of 25 samples 250 ms / sample Continuous	2 trip Type B NO MIL

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
5 Volt Reference #2 Circuit	P0651	Detects a continuous or intermittent short on th 5 volt reference circuit #2	Primary Processor Vref2 <	4.432		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	19/39 counts or 0.1875sec continuous; 12.5 msec/count in main /Secondary processor	Туре: А
			or Primary Processor Vref2 > Secondary Processor Vref1 < Secondary Processor Vref1 >	4.659 4.432 4.659		conditions	19/39 counts or 15 counts continuous; 12.5 msec/count in Secondary processor	MIL: YES Trips: 1
Powertrain Relay Control (ODM)	P0685	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage	11 volts ≤ Voltage ≤ 18 volts	8 failures out of 10 samples 250 ms / sample Continuous	2 trips Type B
Powertrain Relay Feedback Circuit High		This DTC is a check to determine if the Powertrain relay is functioning properly.	PT Relay feedback voltage is Stuck Test: PT Relay feedback voltage is when commanded 'OFF'	≥ 18 volts	Powertrain relay commanded "ON" No active DTCs:	PowertrainRelayStateO n Error	5 failures out of 6 samples	2 trips Type B
Fuel Pump Control Module (FPCM) Requested MIL Illumination	P069E	Monitors the FPCM MIL request line to determine when the FPCM has detected a MIL illuminating fault.	Fuel Pump Control Module Emissions-Related DTC set			Time since power-up > 3 seconds	Continuous	Type A 1 trips MIL: NO
Transmission Control Module (TCM) Requested MIL Illumination	P0700	Monitors the TCM MIL request line to determine when the TCM has detected a MIL illuminating fault.	Transmission Emissions-Related DTC set			Time since power-up > 3 seconds	Continuous	Type A 1 trips MIL: NO

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Skip Shift Solenoid Control Circuit (Manual Transmission Only)		Control circuit voltage is monitored during operation. It should be low during operation and near B+ when "off".	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage Engine Speed	11 volts ≤ Voltage ≤ 18 volts > 600 RPM	20 failures out of 25 samples 250 ms / sample Continuous	2 trips Type B
Clutch Pedal Position Sensor Circuit Range / Performance (Manual Transmission Only)	P0806	Detects if Clutch Pedal Position Sensor is Stuck in a range indicative of a vehicle NOT in gear, when the vehicle is determined to be in gear.	Filtered Clutch Pedal Position Error when the vehicle is determined to be in gear.	> 1 %	N/V Ratio must Match Actual Gear (i.e. vehicle in gear) Transfer Case not in 4WD Low range		25 ms loop Continuous	1 trip(s) Type A
					Engine Torque Clutch Pedal Position	EngTorqueThreshold Table < ResidualErrEnableLo		
						w Table > ResidualErrEnableHi gh Table		
				disable conditions:	No active DTCs:	ClutchPositionSensorC ktLo FA ClutchPositionSensorC kitHi FA CrankSensorFA VehicleSpeedSensor_F		
Clutch Pedal Position Sensor Circuit Low (Manual Transmission Only)	P0807	Detects Continuous Circuit Short to Low or Open	Clutch Position Sensor Circuit	< 4 % of Vref	Engine Not Cranking System Voltage	< 10.0 Volts	200 failures out of 250 samples	1 trip(s)
(manual manual m				disable conditions:	No active DTCs:	5VoltReferenceB_FA	25 ms loop Continuous	Type A
Clutch Pedal Position Sensor Circuit High (Manual Transmission Only)	P0808	Detects Continuous Circuit Short toHigh	Clutch Position Sensor Circuit	> 96 % of Vref	Engine Not Cranking System Voltage	< 10.0 Volts	200 failures out of 250 samples	1 trip(s)
				conditions:	No active DTCs:	5VoltReferenceB_FA	25 ms loop Continuous	Туре А
Clutch Pedal Position Not Learned (Manual Transmission Only)	P080A	Monitor for Valid Clutch Pedal Fully Applied Learn Position values	Fully Applied Learn Position OBD Manufacturer Enable Counter	= 0 = 0	Clutch Pedal Position Not Learned		250 ms loop Continuous	1 trip(s) Type A
Traction Control Torque Request Circuit	P0856	Determines if torque request from the EBTCM is valid	with GMLAN: Serial Communication 2's complement message - (\$140 for PPEI2 or \$1C9 or \$1C7 for PPEI3)	Message <> 2's complement of	All except Class2 with PWM: Serial communication to EBTCM (U0108) Power Mode	No loss of communication	All except Class2 PWM: Count of 2's complement values not equal	1 trip(s) Type C "Special Type C"

		OR Serial Communication message (\$140 for PPEI2 or \$1C9 or \$1C7 for PPEI3) rolling count value	message Message rolling count value <> previous message rolling count value plus one	Engine Running Status of traction in GMLAN message (\$380 for PPEI2 or \$4E9 for PPEI3)	= Traction Present	>= 10 OR 10 rolling count failures out of 10 samples	
						Performed every 25 msec	
		with PWM: PWM Duty cycle OR PWM Duty cycle	< 5 Pct > 95 Pct	Only Class2 with PWM: Traction Status for PWM (\$2B3C Class2 message) Engine Run Time	= Traction Present > 2 Seconds	Only Class2 with PWM: 12 failures out of 30 samples Performed every 50 msec	
i	induction problems affecting airflow and/or manifold pressure.	AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR	<= 230 kPa/(g/s) > 12 grams/sec	Engine Speed Engine Speed Coolant Temp Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)		Calculation are	Type B 2 trips
		Model 1) Filtered AND ABS(Measured MAP – MAP	> 15.0 kPa) > 15.0 kPa		Residual Weight Factor based on RPM Modeled Air Flow multiplied by MAF Residual Weight Factor based on RPM and MAF Residual Weight		
101		Determines if there are multiple air induction problems affecting airflow and/or manifold pressure.	Determines if there are multiple air Filtered Throttle Model induction problems affecting airflow and/or manifold pressure. AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP MAP	Determines if there are multiple air Filtered Throttle Model induction problems affecting airflow and/or manifold pressure. AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR ABS(Measured MAP – MAP Model 1) Filtered ABS(Measured MAP – MAP Model 2) Filtered ABS(Measured MAP – MAP	Determines if there are multiple air Filtered Throttle Model induction problems affecting airflow and/or manifold pressure. AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered ABS(Measured MAP – MAP Model 2) Filtered ABS(Measured MAP – MAP Model 2) Filtered > 15.0 kPa Engine Run Time Engine Run Time	Determines if there are multiple air induction problems affecting airflow and/or manifold pressure. AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR ABS(Measured MAP – MAP Model 1) Filtered AND AND AND AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured MAP – MAP Model 3) Filtered > 15.0 kPa Engine Speed Coolant Temp Coolant Temp Intake Air Temp	Determines if there are multiple air induction problems affecting airflow and/or manifold pressure. AND (ABS(Measured Flow – Modeled Air Flow) Filtered OR ABS(Measured MAP – MAP Model 1) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured MAP – MAP Model 2) Filtered ARD ABS(Measured MAP – MAP Model 1) Filtered ARD ABS(Measured MAP – MAP Model 2) Filtered ARD ABS(Measured MAP – MAP Model 2) Filtered ARD ABS(Measured MAP – MAP Model 2) Filtered ARD ARD ARD ARD ARD ARD ARD AR

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						on RPM MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM See table "IFRD Residual Weighting Factors". MAP_SensorCircuitFA EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FA ECT_Sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO		
Inlet Airflow System Performance (supercharged)	P1101	airflow and/or manifold pressure.	Flow Rationality Diagnostic Failure Matrix" for combinations of model failures that can set this DTC.		Coolant Temp Intake Air Temp Intake Air Temp Minimum total weight factor (all factors multiplied together)		Continuous Calculation are performed every 12.5 msec	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			ABS(Measured MAP – MAP Model 2) Filtered AND ABS(Measured SCIAP – SCIAP Model 1) Filtered AND ABS(Measured SCIAP – SCIAP Model 2) Filtered	> 15.0 kPa > 15.0 kPa		Factor Based on MAF Estimate MAP Model 1 multiplied by MAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
				> 15.0 kPa		MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 1 multiplied by SCIAP1 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						SCIAP Model 2 multiplied by SCIAP2 Residual Weight Factor based on RPM and Boost Residual Weight Factor based on % of Boost		
						See table "IFRD Residual Weighting Factors Supercharged		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Insufficient Switching Bank 1 Sensor 1	P1133	This DTC determines if the O2 sensor is no longer sufficiently switching.	below the threshold. OR If Slope Time L/R or R/L Switches are below the threshold.	H/C L/R switches < Threshold, or H/C R/L switches < Threshold, (refer to table named "P1133 - O2S HC L to R Switches Limit Bank 1 Sensor 1" Pass/Fail Threshold table & "P1133 - O2S HC R to L Switches Limit Bank 1 Sensor 1" Pass/Fail Threshold table in Supporting tables tab) OR S/T L/R switches < 3, or S/T R/L switches < 3		Applications". MAP_SensorCircuitFA EGRValve_FP EGRValve_FP EGRValvePerformance _FA MAF_SensorCircuitFA CrankSensorFA ECT_sensor_FP IAT_SensorFA IAT_SensorCircuitFP CylDeacSystemTFTKO IAT2_SensorCircuitFP SCIAP_SensorCircuitFP SCIAP_SensorCircuitFP AmbientAirDefault_SC TPS_ThrottleAuthority Defaulted MAP_SensorFA IAT_SensorFA ECT_SensorFA ECT_SensorFA ECT_SensorFA ECT_SensorFA ECT_SensorFA EvapPurgeSolenoidCircuit_FA EvapPurgeSolenoidCircuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCircuit_FA EvapEmissionSystem_FA FuelInjectorCircuit_FA AIR System FA EthanolCompositionSe nsor_FA	Sample time is 70 seconds Frequency: Once per trip Green Sensor Delay Criteria	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					EGR Device Control Idle Device Control Idle Device Control Fuel Device Control Fuel Device Control AIR Device Control AIR Device Control AIR Device Control Control Every Ever	10.0 volts < system voltage< 18.0 volts = Not active = Not active = Not active = Not active = Not Valid >= 40 seconds = Valid > 60 °C > -40 °C > 160 seconds > 0.0 seconds > 0.0 seconds > 0.0 seconds > 0.0 seconds > 1200 <= RPM <= 3000 < 92 % Ethanol > 70 kpa > 5 % = False = Closed Loop = TRUE = Enabled <= 100.0 mgrams = Not Defaulted not = Power Enrichment DFCO not active	enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
					All of the above met for Time	> 3.5 seconds		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2S Insufficient Switching Bank 2 Sensor 1	P1153	This DTC determines if the O2 sensor is no longer sufficiently switching.	Cycle L/R or R/L Switches are below the threshold. OR If Slope Time L/R or R/L Switches are below the threshold.	H/C L/R switches < Threshold, or H/C R/L switches < Threshold, (refer to table named "P1153 - O2S HC L to R Switches Limit Bank 2 Sensor 1" Pass/Fail Threshold table & "P1153 - O2S HC R to L Switches Limit Bank 2 Sensor 1" Pass/Fail Threshold table in Supporting tables tab) OR S/T L/R switches < 3, or S/T R/L switches < 3	Bank 2 Sensor 1 DTC's not active	AmbientAirDefault MAF_SensorFA EvapPurgeSolenoidCir cuit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSnsr Ckt_FA FuelInjectorCircuit_FA AIR System FA EthanolCompositionSe nsor_FA EngineMisfireDetected FA = P0151, P0152 or P0154 10.0 volts < system voltage< 18.0 volts = Not active = Not active = Not active = Not active	Sample time is 70 seconds Frequency: Once per trip Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	2 trips Type B
					Engine Run Time Time since any AFM status change Time since Purge On to Off	= Valid > 60 °C > -40 °C		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Engine airflow Engine speed Fuel Baro Throttle Position Low Fuel Condition Diag Fuel Control State Closed Loop Active LTM fuel cell Transient Fuel Mass Baro Fuel Control State Fuel State Commanded Proportional Gain	= False = Closed Loop = TRUE = Enabled <= 100.0 mgrams = Not Defaulted not = Power Enrichment DFCO not active		
Air Fuel Imbalance Bank 1		Determines if the air-fuel delivery system is imbalanced by monitoring the pre-catalyst O2 sensor voltage characteristics	The Bank 1 AFIM Filtered Length Ratio variable exceeds a value of	> 0.500	Engine Run Time ECT Engine speed Mass Airflow PerCent Ethanol Delta O2 voltage during previous 12.5ms O2 sensor switches	> 5 seconds > -20 oC 425 < rpm < 6000 25 < g/s < 510 < 85 % > 5 and -5	Frequency: Continuous Monitoring of O2 voltage signal in 12.5ms loop AFIM Filtered Length Ratio variable is updated after every 3 seconds of valid data	Type B 2 Trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Intrusive Diagnostics	during current 3 second sample period. It it is is determined by seconds to allow time for g enabled LONG FT E		
Air Fuel Imbalance Bank 2	P1175	Determines if the air-fuel delivery system is imbalanced by monitoring the pre-catalyst O2 sensor voltage characteristics	The Bank 2 AFIM Filtered Length Ratio variable exceeds a value of	> 0.500	System Voltage Engine Run Time ECT Engine speed	10 < V < 18 for > 4 seconds > 5 seconds > -20 oC 425 < rpm < 6000 25 < g/s < 510	Frequency: Continuous Monitoring of O2 voltage signal in 12.5ms loop AFIM Filtered Length Ratio variable is updated after every 3 seconds of valid data	Type B 2 Trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Delta O2 voltage during previous	> 5 and -5		
					12.5ms			
					O2 sensor switches	> 0 times during current		
						3 second sample		
					Quality Factor	period > 0 in the current		
					Quality 1 actor	operating region		
					For DoD equipped vehicles only			
						during current 3 second		
						sample period.		
					The AFIM Filtered Length Ra	tio is determined by		
					The first report is delayed for 10 s			
					Closed Loop fuelin			
					Fuel System Status	LONG FT Enabled		
					Disable Condit EngineMisfireDete			
					MAP_Sensor			
					MAF_Sensor			
					ECT_Sensor_			
					Ethanol Composition			
					TPS_ThrottleAuthorit FuelInjectorCirc			
					AIR System			
					O2S_Bank_1_Sens			
					O2S_Bank_2_Sens	sor_1_FA		
					EvapPurgeSolenoid			
					EvapFlowDuringNor			
					EvapVentSolenoid0 EvapSmallLeal			
					EvapEmissionSys			
					FuelTankPressureSens			
						Not Active		
					Intrusive Diagnostics	Not Active		
					Engine OverSpeed Protection Reduced Power Mode (ETC DTC)	Not Active		
					. teaded i ene. Mode (E10 B10)			
					PTO	Not Active		
E. C. M.O.	D4055		The FOM detect if the	First Contrate 100 f. 10	Traction Control	Not Active	T	T A
EngineMetal	P1258		The ECM detects that the engine coolant has exceeded a threshold		If feature was active and it set the coolant sensor fault then feature	KeEMOG b DisableO	Time that EMOP active must be true	Type A
OvertempActive			for certain amount of time.	Seconds		vertempProtect = 0	f D4050 t- bt	1 trips
			nor certain amount of time.		fault pending on the next trip.	Feature is enabled only	is 0 seconds	
		The objective of the algorithm is to			ponding on the next trip.	IT	5 5555.146	
		protect the engine in the event of				KeEMOG_b_DisableO		
		engine metal overtemperature,				vertempProtect = 0 and		
ABS Rough Road	P1380	mainly due to loss of coolant This diagnostic detects if the ABS	GMI an Message: "Wheel Sensor	= FALSE	Vehicle Speed	Engine Run time > 10 VSS ≥ 8 kph	40 failures out of	1 Trips
malfunction	1 1300	controller is indicating a fault, and						Type C
manariodori	•	Tooms one is maleating a rault, and	I toagii rtoad magiiitade validity	ı	gio opood	p	oo darripica	.,,,,

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
		misfire is present. When this occurs, misfire will continue to run.			Engine Load RunCrankActive Active DTC	load < 60 = TRUE P0300, MIL Request	250 ms /sample Continuous	"Special Type C" 1 trips
ABS System Rough Road Detection Communication Fault	P1381	This diagnostic detects if the rough road information is no longer being received from the ABS controller, and misfire is present. When this occurs, misfire will continue to run.	Loss of GMLan Message: "Wheel Sensor Rough Road Magnitude"	= FALSE	Vehicle Speed Engine Speed Engine Load RunCrankActive Active DTC	VSS ≥ 8 kph rpm < 8192 load < 60 = TRUE P0300, MIL Request	40 failures out of 80 samples 250 ms /sample Continuous	1 Trips Type C "Special Type C"
Cold Start Emissions Reduction System Fault		Model based test computes power from exhaust flow and thermal energy resulting from elevated idle speed and retarded spark advance. Detects if the cold start emission reduction system has failed resulting in the delivered power being out of range.	exhaust power - Average	< -2.15 KJ/s (high RPM failure mode) > 1.30 KJ/s (low RPM failure mode)	Cold Start Emission Reduction strategy is considered active light off or Idle cat light off stra active. Spark CLO is considered CatLightOffDesiredSparkRetar and air per cylinder and scaled engine run time) <= 11.00 Idle CLO is considered active exceeds a base RPM value (fur Vehicle Speed Throttle Position A change in throttle position (tip For Manual Transmission vehicles General Ena DTC's Not S MAF_Senso MAP_Senso IAT_SensorCin IAT2_SensorCin IAT2_SensorCin IAT2_SensorCin IAC_SystemRF TPS_FA VehicleSpeedSer EngineMisfireDete IgnitionOutputDr ControllerProcesso 5VoltReference 5VoltReference	if either the Spark cat ategies are considered active when the diffunction of idle RPM based on coolant and degrees of Spark e if the desired RPM action of coolant) plus < 2 kph < 0.50 percent < 0.50 perc	when the cold start emission reduction strategy is active Frequency: 100ms Loop Test completes after 12 seconds of accumulated qualified data.	Type A 1 Trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
			!		FuelInjectorCirc Clutch Senso	cuit_FA		
Cooling Fan Speed Output (Circuit Not used on systems with Mechanical Fan)	P1482	This DTC checks the circuit for electrical integrity during operation.	The ECM detects that the commanded state of the driver and the actual state of the control circuit do not match.		Run/Crank Voltage Engine Speed	11 volts ≤ Voltage ≤ 18 volts ≥ 400 RPM	25 samples 250 ms / sample Continuous with fan operation	2 trips Type
Replicated Transmission Output Speed (RTOS) Sensor (non VSES trucks and vans with ABS only)	P150A	No activity in the RTOS Signal circuit	RTOS Sensor Raw Speed	<= 60 RPM Disable Conditions:	Transmission output Speed Angular Velocity Engine Speed Hi Engine Speed Lo Time at Engine Speed Ignition Voltage Hi Ignition Voltage Lo Disabled for these DTC's:	>= 1200 RPM <= 7500 RPM >= 200 RPM >= 5 sec <= 18 Volts >= 11 Volts VehicleSpeedSensor_F A P150B	>= 4.5 Fail Time (Sec)	Type B 2 trips
Replicated Transmission Output Speed (RTOS) Sensor (non VSES trucks and vans with ABS only)	P150B	RTOS Signal Circuit Intermittent	RTOS Sensor Loop-to-Loop speed change	>= 350 RPM	Raw Output Speed Output Speed change Transmission output Speed Angular Velocity 4WD Range Change Delay Timer Time for Positive Output Speed Change Time above raw Output Speed Engine Speed Hi Engine Speed Lo Time at Engine Speed Ignition Voltage Hi Ignition Voltage Lo	>= 300 RPM <= 150 RPM >= 1200 Sec	>= 3.25 Fail Time (Sec)	Type B 2 trips
Transmission Engine Speed Request Circuit	P150C	Determines if engine speed request from the TCM is valid	Serial Communication rolling count value Transmission engine speed protection	Disable Conditions: + 1 from previous \$19D message (PTEI3) not equal to 2's complement of transmission engine speed request + Transmission alive rolling count	Disabled for these DTC's: Diagnostic enable bit Engine run time # of Protect Errors # of Alive Rolling Errors No idle diagnostic 506/507 code No Serial communication loss to TCM	A 1 0.5 10 6 IAC_SystemRPM_FA (U0101)	Diagnostic runs in 25 ms loop	2 trips Type

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Engine Running Power mode	= TRUE		
Throttle Actuator Control - Position Performance	P1516	Detect a throttle positioning error	The throttle model and actual Throttle position differ by > or The throttle model and actual	8.41%	Power mode	Run Crank Active Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	0.1875sec in the Secondary processor	Type: A MIL:
			Throttle position differ by <		Engine Running or Ignition Voltage > and Ignition Voltage > and Throttle is being Controlled and Communication Fault (SPI is not set) and TPS minimum learn is not active Ignition voltage failure is false (P1682)	11 5.4		YES Trips: 1
		Detect throttle control is driving the throttle in the incorrect direction	Thottle Position >	38.25%	(Throttle is being Controlled and TPS minimum learn is active) or Reduce Engine Power is Active	Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	0.1375sec continuous	
		3) Degraded Motor	Desired throttle position is stable within 0.25% for 4.0000sec and the delta between Indicated throttle position and desired throttle position is greater than 2.00%		Engine Running or Ignition Voltage > and Ignition Voltage > and Throttle is being Controlled and Communication Fault (SPI is not set) and TPS minimum learn is not active	5.4	0.4875sec continuous on secondary processor	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Ignition voltage failure is false (P1682)			
					(1.1002)			
Remote Vehicle Speed	P162B	Determines if the speed request	Password Protect error - Serial		Vehicle Requested Speed Limit	< 158 Kph		
Limiting Signal Circuit		from OnStar is valid	Communication message -	Message <> two's complement of			>= 10 Password	1 trip(s)
				message			Protect errors out	Type C
			Rolling count error - Serial	PR 			of 10 samples	"Special Type C"
			Communication message (\$3ED) rolling count value	Message <> previous message			>= 10 Rolling	
			roming count value	rolling count value + one			count errors out of 10 samples	
							Performed every	i !
							25 msec	
Ignition Voltage Correlation		Detect a continuous or intermittent out of correlation between the	Run/Crank – ETC Run/Crank >	3.00Volts			240/480 counts 12.5 msec/count	Type:
		Run/Crank Ignition Voltage & the Powertrain Relay Ignition Voltage					in main processor	
		1 owertain relay ignition voltage					0.1750sec	
							continuous when ETC Run/Crank is	
							lower then Run/Crank by the	
							threshold value	
					Powertrain commanded on and			Α
					Run/crank voltage >	Table, f(IAT). See supporting tables		MIL:
					or ETC Run/crank voltage > and	5.5		YES
	Bassas				Run/crank voltage >	5.5	0.50	Trips:
Fuel Level Sensor 2 Performance		This DTC will detect a fuel sender stuck in range in the secondary			Engine Running		250 ms / sample	2 trips Type B
(For use on vehicles with		fuel tank.			No active DTCs:	VehicleSpeedSensor_F A	Continuous	
electric transfer pump dual			Fuel Level in	Primary and Secondary Tanks Rem	nains in an Unreadable Range too l	ong		
fuel tanks)			If fuel volume in primary tank is AND	>= 99.0 liters				
			Fuel volume in secondary tank and remains in this condition for					
				200 miles				
I	I	l	OR	l		l l		

	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
				During fuel tra	nfer			
			When the enable conditions are met, 3.0 liters of fuel will be transferred from the secondary tank and 3.0 liters of fuel will be transfered into the primary tank within 180 seconds. There is a short delay of 20 seconds to allow fuel slosh to settle before the fail timer begins. If the secondary tank volume does not decrease by the cal amount but the primary volume does increase by the cal	Duning ruer tra	Transfer Pump is commanded on No device control for the transfer pump Fuel Volume in Secondary Tank Vehicle Speed	< 43 liters < 0 kph		
			amount after the fail timer has expired, then P2066 sets. OR					
				After a Refuel B	vent			
			If the primary fuel volume changes by 45 liters from engine "off" to engine "on" the secondary volume should change by 3 liters. Otherwise, P2066 will set.					
				Distance Traveled without a Secon				
			If the vehicle is driven a distance of 100 miles without the secondary fuel level changing by 3 liters, then the sender must be OR		Volume in Secondary Tank and Volume in Secondary Tank	>= 3 liters < 43 liters		
			The secondary fuel sender is stuck in the deadband AND If the vehicle is driven a distance of 100 miles without the secondary fuel level changing by 3 liters, then the sender must be stuck.	> 43 liters.	Secondary Full Transfer Pump On Time	>= 600 seconds		
Fuel Level Sensor 2	P2066	This DTC will detect a fuel sender			Engine Running		250 ms / sample	2 trips Type B
Performance (For use on vehicles with		stuck in range in the secondary fuel tank.			No active DTCs:	VehicleSpeedSensor_F A	Continuous	
mechanical transfer pump				evel in Secondary Tank Remains in	an Unreadable Range too Long			
dual fuel tanks)			If fuel volume in primary tank is	>= 28.5 liters				

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			AND Fuel volume in secondary tank and remains in this condition for OR Fuel Level Volume in Primary Tank AND Volume in Secondary Tank and remains in this condition for	124 miles s in a Readable Range for both Pri 28 liters 6 liters	mary and Secondary Tanks too Loi	ng		
			OR					
				Distance Traveled without a Secon				
			If the vehicle is driven a distance of 62 miles without the secondary fuel level changing by 3 liters, then the sender must be stuck.		Volume in Secondary Tank	>= 6.0 liters		
Fuel Level Sensor 2 Circuit Low Voltage (For use on vehicles with	P2067	This DTC will detect a fuel sender stuck out of range low in the secondary fuel tank.	Fuel level Sender % of 5V range	< 10 %	Run/Crank Voltage		225 samples 100 ms / sample Continuous	
Fuel Level Sensor 2 Circuit High Voltage (For use on vehicles with	P2068	This DTC will detect a fuel sender stuck out of range low in the secondary fuel tank.	Fuel level Sender % of 5V range	> 60 %	Run/Crank Voltage		180 failures out of 225 samples 100 ms / sample Continuous	2 trips Type B
Control Module Throttle Actuator Position Performance	P2101	Detect a throttle positioning error	Difference between measured throttle position and modeled throttle position >	8.41%	TPS minimum learn is not active and Throttle is being Controlled and	voltage > 6.00 and	1. 15/15 counts; 12.5 msec/count in the primary processor	Type: A MIL:
			Difference between measured throttle position and modeled throttle position <	8.41%	(Engine Running or Ignition Voltage > or Ignition Voltage >) Ignition voltage failure is false (P1682)	5.5		YES Trips:
		Detect throttle control is driving the throttle in the incorrect direction or exceed the reduced power limit	Thottle Position >	39.26%	TPS minimum learn is active		2. 11counts; 12.5 msec/count in the primary processor	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			Thottle Position >	39.06%	Reduced Power is True			
Accelerator Pedal Position (APP) Sensor #1		Detects a continuous or intermittent short or open in APP1 circuit on the secondary processor but sensor is in range on the primary processor	Secondary APP1 Voltage < or Secondary APP1 Voltage >	0.325 4.75	No 5 V reference error No 5 V reference DTCs	Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	A MIL: YES Trips: 1
Accelerator Pedal Position P(APP) Sensor 1 Lo		Detects a continuous or intermittent short or open in APP1 circuit on both processors or just the primary processor	1. Primary APP1 Voltage <	0.463	No 5 V or forman arms	Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	1. 19/39counts or 14counts continuous; 12.5 msec/count in the primary processor	Type: A MIL:
			2. Secondary APP1 Voltage <	0.325	No 5 V reference error No 5 V reference DTCs		2. 19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	YES Trips:
Accelerator Pedal Position (APP) Sensor 1 Hi		Detect a continuous or intermittent short in the APP1 sensor on on both processors or just the primary processor	1. Primary APP1 Voltage >	4.75		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	1. 19/39counts or 14counts continuous; 12.5 msec/count in the primary processor	Type:
			2. Secondary APP1 Voltage >	4.75	No 5 V reference error No 5 V reference DTCs		2. 19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	MIL: YES Trips: 1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Accelerator Pedal Position (APP) Sensor 2	P2125	Detects a continuous or intermittent short or open in APP2 circuit on the secondary processor but sensor is in range on the primary processor	Seondary APP2 Voltage < or Secondary APP2 Voltage >	0.325 4.75	No 5 V reference error No 5 V reference DTCs	else the failure will be	19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	Type: A MIL: YES Trips: 1
Accelerator Pedal Position (APP) Sensor 2 Lo	P2127	Detects a continuous or intermittent short or open in APP2 circuit on both processors or just the primary processor	1. Primary APP2 Voltage <	0.325			1. 19/39counts or 14counts continuous; 12.5 msec/count in the primary processor	Туре:
			2. Secondary APP2 Voltage <	0.325	No 5 V reference error No 5 V reference DTCs		2. 19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	A MIL: YES Trips: 1
Accelerator Pedal Position (APP) Sensor 2 Hi	P2128	Detect a continuous or intermittent short in the APP2 sensor on on both processors or just the primary processor	Primary APP2 Voltage >	2.6	No 5 V reference error		1. 19/39 counts or 14counts continuous; 12.5 msec/count in the primary processor	Type:
			2. Secondary APP2 Voltage >	4.75	No 5 V reference DTCs		2. 19/39counts or 14counts continuous; 12.5 msec/count in the secondary processor	MIL: YES Trips: 1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Throttle Position (TP) Sensor 1-2 Correlation	P2135	Detects a continuous or intermittent correlation fault between TP sensors #1 and #2 on either processor	On the Primary processor, the difference between TPS1 displaced and TPS2 displaced >	6.998% offset at min. throttle position with it linearly increasing to 10% at max. throttle position	No TPS Sensor Faults No 5 V reference DTCs	Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	79/159 counts or 58 counts continuous; 3.125 msec/count in the primary processor	Type: A MIL: YES
			On the Secondary processor, the difference between TPS1 displaced and TPS2 displaced >	7.11% offset at min. throttle position with it linearly increasing to 10% at max. throttle position	1100 0 1 13131 1313 1313			Trips:
			On the primary processor, the difference between (raw min TPS1) and (raw_min TPS2) >	4.999%	No TPS Sensor Faults No 5 V reference DTCs	Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	19/39 counts or 15 counts continuous; 12.5 msec/count in the secondary processor	
			On the secodary processor, the difference between (raw min TPS1) and (raw min TPS2) >	5.00%				
Accelerator Pedal Position (APP) Sensor 1-2 Correlation	P2138	Detects a continuous or intermittent correlation fault between APP sensors #1 and #2 on either processor		8.073% offset at min. throttle position with it linearly increasing to 10% at max pedal position		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	19/39 counts intermittent or 15 counts continuous, 12.5 msec/count in the primary processor	Туре:
			On the secondary processor, the difference between APP 1 displaced and APP 2 displaced is >	position with it linearly increasing	No APP Sensor Faults No 5 V reference DTCs			A MIL: YES Trips:

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			On the primary processor, the difference between the learned PPS1 min and PPS2 min >	5.000%		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all	19/39 counts intermittent or 15 counts continuous, 12.5 msec/count in the secondary processor	1
			On the primary processor, the difference between the learned PPS1 min and PPS2 min >	5.000%				
Transfer Case Speed Sensor Output (TCSS) (For 6-speed trans applications with a vehicle speed sensor behind the transfer case)	P2160	No activity in the TCSS Signal circuit	TCSS Raw Speed	<= 50 RPM	Engine Torque high Engine Torque low Transmission Input Speed High Transmission Input Speed Low Throttle opening high Throttle opening low	<= 8192 N-m >= 60 N-m <= 1000 RPM >= 7500 RPM <= 99 % >= 8.0 %	>= 5 Fail Time (Sec)	Type B 2 trips
				Disable Conditions:	Disables on these DTCs:	TPS_FA EngineMisfireDetected FA		
Transfer Case Speed Sensor Output (TCSS) (For 6-speed trans applications with a vehicle speed sensor behind the transfer case)	P2161	TCSS Circuit Signal Intermittent	TCSS Loop-to-Loop change TCSS Loop-to-Loop change	>= 475 RPM >= 225 RPM Disable Conditions:	Engine Speed Lo Disables on these DTCs:	>= 1000 RPM CrankSensorFA P2160	>= 4 Enable Time (Sec)	Type B 2 trips
Minimum Throttle Position Not Learned	P2176	TP sensors were not in the minmum learn window after multiple attempts to learn the minimum.	During TPS min learn on the Primary processor, TPS Voltage >	18.70%		Run/crank voltage or Powertrain relay voltage > 6.00 and reduced power is false, else the failure will be reported for all conditions	2.0secs continuous	Туре:
			or During TPS min learn on the Secondary processor, TPS Voltage >	19.60%	No TPS circuit errors No TPS circuit faults Ignition voltage failure is false (P1682) Minimum TPS learn active			A MIL: YES Trips:

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			Number of learn attempts >	10counts				
Barometric Pressure (BARO) Sensor Performace	P2227	Detects stability of barometric pressure input	Difference between the current Baro sensor reading and the previous Baro sensor reading	> 10.0 kPa	Ignition has been on Vehicle Speed No Active DTCs:	> 10.0 seconds < 100 KPH AmbientAirPressCktFA ECT_Sensor_FA IAT_SensorFA MAF_SensorFA AfterThrottlePressure_ NA or AfterThrottlePressure_ SC TPS_FA TPS_Performance_FA VehicleSpeedSensorEr	20 failures out of 25 samples 1 sample every 250 msec	Type B 2 trips
Barometric Pressure(BARO) Sensor Circuit Low	P2228	Detects a continuous short to low or open in either the signal circuit or the BARO sensor.	BARO Voltage	< 1.0 % of 5 Volt Range (0.1 Volts = 1.0 kPa)	Continuous		20 failures out of 25 samples 1 sample every 12.5 msec	Type B 2 trips
Barometric Pressure(BARO) Sensor Circuit High	P2229	Detects an open sensor ground or continuous short to high in either the signal circuit or the BARO sensor.	BARO Voltage	> 90 % of 5 Volt Range (4.5 Volts = 115.3 kPa)	Continuous		20 failures out of 25 samples 1 sample every 12.5 msec	Type B 2 trips
O2 Sensor Signal Stuck Lean Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P2270	This DTC determines if the post catalyst O2 sensor is stuck in a normal lean voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test (during coast) which increases the delivered fuel to achieve the required rich threshold.	Post O2 sensor cannot achieve the rich threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Lean Voltage Test is greater than the threshold before the above voltage threshold is met.	Post O2S signal < 775 mvolts AND Accumulated air flow during stuck lean test > 82 grams.	No Active DTC's	IAT_SensorFA MAF_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed.	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Engine Speed to enable test Engine Speed to disable test Engine Airflow Vehicle Speed to enable test Vehicle Speed to disable test Closed loop integral Closed Loop Active Evap Ethanol Post fuel cell Power Take Off EGR Intrusive diagnostic All post sensor heater delays O2S Heater on Time Predicted Catalyst temp	= Not Valid = Not Valid = False 1150 <= RPM <= 2500 1075 <= RPM <= 2650 3 gps <= Airflow <= 20 gps 43.5 mph <= Veh Speed <= 74.6 mph 41.0 mph <= Veh Speed <= 79.5 mph 0.74 <= C/L Int <= 1.08 = TRUE not in control of purge not in estimate mode = enabled = not active = not active = not active = 100.0 sec 600 °C <= Cat Temp <= 900 °C = DFCO possible 0 seconds, and then the	Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2 Sensor Signal Stuck Rich Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P2271	This DTC determines if the post catalyst O2 sensor is stuck in a normal rich voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which requests the DFCO mode to achieve the required lean	The Accumulated mass air flow monitored during the Stuck Rich	1) Post O2S signal > 100 mvolts AND 2) Accumulated air flow during stuck rich test > 50 grams.		Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA AIR System FA	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Ranid	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS		MIL ILLUM.
		threshold.	voltage threshold is met.			FuelTrimSystemB1_FA	ResponseActive = TRUE, multiple	
						FuelTrimSystemB2_FA EngineMisfireDetected	tests per trip are allowed.	
						_FA EthanolCompositionSe		
					B1S2 Failed this key cycle	P013F or P2270		
					System Voltage	10.0 volts < system voltage< 18.0 volts	O O	1
					Learned heater resistance	= Valid	Green Sensor Delay Criteria The diagnostic will	
					ICAT MAT Burnoff delay Green O2S Condition	= Not Valid = Not Valid	not be enabled until the next ignition cycle after	
					Low Fuel Condition Diag Engine Speed	= False 1150 <= RPM <= 2500	the following has been met: Airflow greater than 22	
					Engine Airflow	3 gps <= Airflow <= 20	gps for 120000 grams of	
					Closed loop integral	Speed <= 74.6 mph 0.74 <= C/L Int <= 1.08	accumulated flow non-continuously.	
					Closed Loop Active Evap	= TRUE not in control of purge	(Note that all other enable criteria must be met on	
					Post fuel cell	not in estimate mode = enabled	the next ignition cycle for the test to	
					Power Take Off EGR Intrusive diagnostic		run on that ignition cycle). Note: This feature	
					All post sensor heater delays		is only enabled when the vehicle is	
						>= 100.0 sec 600 °C <= Cat Temp	new and cannot be enabled in service	
					Predicted Catalyst temp Fuel State DTC's Passed	<= 900 °C = DFCO possible = P2270 (and P2272 (if		
						applicable)) = P013E (and P014A (if		
					DTC's Passed	applicable)) = P013A (and P013C (if applicable))		
					After above conditions are met:			
					DFCO mode is continued (wo drive	er initiated pedal input).		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Signal Stuck Lean Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P2272	This DTC determines if the post catalyst O2 sensor is stuck in a normal lean voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test (during coast) which increases the delivered fuel to achieve the required rich threshold.	Post O2 sensor cannot achieve the rich threshold voltage.	1) Post O2S signal < 775 mvolts AND 2) Accumulated air flow during stuck lean test > 82 grams.	B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Engine Speed Engine Speed to disable test Engine Airflow Vehicle Speed Vehicle Speed to disable test	TPS_ThrottleAuthority Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013C, P013D, P014A, P014B, P2272 or 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = RPM <= 2500 1075 <= RPM <= 2500 1075 <= RPM <= 200 3 gps <= Airflow <= 20 gps 43.5 mph <= Veh Speed <= 74.6 mph 41.0 mph <= Veh	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed. Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on	2 trips Type E
					Closed Loop Active Evap Ethanol Post fuel cell Power Take Off EGR Intrusive diagnostic All post sensor heater delays	not in control of purge not in estimate mode = enabled = not active = not active	cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					O2S Heater on Time Predicted Catalyst temp Fuel State	>= 100.0 sec 600 °C <= Cat Temp <= 900 °C = DFCO possible		
					All of the above met for at least 2 Force Cat Rich intrusive st	,		
O2 Sensor Signal Stuck Rich Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Performance Diagnostic)	P2273	This DTC determines if the post catalyst O2 sensor is stuck in a normal rich voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which requests the DFCO mode to achieve the required lean threshold.	Post O2 sensor cannot achieve the lean threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Rich Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal > 100 mvolts AND 2) Accumulated air flow during stuck rich test > 50 grams.	B2S2 Failed this key cycle System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Engine Speed Engine Airflow Vehicle Speed Closed loop integral Closed Loop Active Evap	Defaulted ECT_Sensor_FA IAT_SensorFA MAF_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA P013C, P013D, P014A, P014B or P2272 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid = False 1150 <= RPM <= 2500 3 gps <= Airflow <= 20 gps 43.5 mph <= Veh Speed <= 74.6 mph 0.74 <= C/L Int <= 1.08 = TRUE not in control of purge not in estimate mode	Frequency: Once per trip Note: if NaPOPD_b_Reset FastRespFunc= FALSE for the given Fuel Bank OR NaPOPD_b_Rapid ResponseActive = TRUE, multiple tests per trip are allowed. Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle).	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					DTC's Passed	= not active >= 100.0 sec 600 °C <= Cat Temp <= 900 °C = DFCO possible = P2270 (and P2272 (if applicable)) = P013E (and P014A (if applicable)) = P013A (and P013C (if applicable))	Note: This feature is only enabled when the vehicle is new and cannot be enabled in service	
O2 Sensor Signal Stuck Lean Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Voltage Diagnostic)	P2270	post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test	Post O2 sensor cannot achieve the rich threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Lean Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal >= 805 mvolts AND 2) Accumulated air flow during stuck lean test > 550 grams.		Defaulted P0131, P0137, P0151, P0157 P0132, P0138, P0152, P0158 P0134, P0140, P0154, P0160 P0053, P0054, P0059, P0060 P0135, P0141, P0155, P0161 P1133, P1153, P0133, P0153 EvapPurgeSolenoidCircuit_FA EvapFlowDuringNonPurge_FA EvapVentSolenoidCircuit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTankPressureSens orCircuit_FA MAF_SensorFA MAP_SensorFA AIR System FA	Frequency: Once per trip Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag Engine Speed Engine Airflow Vehicle Speed Closed loop integral Closed Loop Active Evap	10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Rese 500 <= RPM <= 5000 3 gps <= Airflow <= 20 gps 14.9 mpn <= ven Speed <= 82.0 mph 0.96 <= C/L Int <= 1.04 = TRUE not in control of purge not in estimate mode = enabled = not active = not active = not active = not active s commanded Rich = Refer to "P2270/P2272 - O2 Sensor Signal Stuck Lean Bank 1/2 Sensor 2" Rich Equiv Ratio = DFCO = PE	new and cannot be enabled in service	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Signal Stuck Rich Bank 1 Sensor 2 (For applications with Post Oxygen Sensor Voltage Diagnostic)	P2271	This DTC determines if the post catalyst O2 sensor is stuck in a normal rich voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which reduces delivered fuel to achieve the required lean threshold.	Post O2 sensor cannot achieve the lean threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Rich Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal <= 150 mvolts AND 2) Accumulated air flow during stuck rich test > 550 grams.	System Voltage Learned heater resistance ICAT MAT Burnoff delay Green O2S Condition Low Fuel Condition Diag	FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA 10.0 volts < system voltage< 18.0 volts = Valid = Not Valid = Not Valid	not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is new and cannot be	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Signal Stuck Lean Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Voltage Diagnostic)	P2272	This DTC determines if the post catalyst O2 sensor is stuck in a normal lean voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test (during coast) which increases the delivered fuel to achieve the required rich threshold.	Post O2 sensor cannot achieve the rich threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Lean Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal >= 805 mvolts AND 2) Accumulated air flow during stuck lean test > 550 grams.	Vehicle Speed Closed loop integral Closed Loop Active Evap Ethanol Post fuel cell Power Take Off EGR Intrusive diagnostic All post sensor heater delays All of the above met for at least commanded off, and then wait commanding lea Fuel State During Stuck Lean test the following abort Piston Protection Converter Mode Hot Coolant Enrichment Fuel State Purge duty cycle No Active DTC's	not in control of purge not in estimate mode = enabled = not active =	not be enabled until the next	2 trips Type B

COMPONENT/ SYSTEM FAULT CODE MONITOR STRATEGY DESCRIPTION MALFUNCTION CRITERIA THRESHOLD VALUE SECONDARY PARAMETERS ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_ FA FuelTrimSystemB1_FA FuelTrimSystemB1_FA	new and cannot be	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Fuel State	"P2270/P2272 - O2 Sensor Signal Stuck Lean Bank 1/2 Sensor 2" Rich Equiv Ratio		
					During Stuck Lean test the following abort Fuel State Fuel State Purge duty cycle	= DFCO = PE		
O2 Sensor Signal Stuck Rich Bank 2 Sensor 2 (For applications with Post Oxygen Sensor Voltage Diagnostic)	P2273	This DTC determines if the post catalyst O2 sensor is stuck in a normal rich voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which reduces delivered fuel to achieve the required lean threshold.	Post O2 sensor cannot achieve the lean threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Rich Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal > 150 mvolts AND 2) Accumulated air flow during stuck rich test > 550 grams.		Defaulted P0131, P0137, P0151, P0157 P0132, P0138, P0152, P0158 P0134, P0140, P0154, P0160 P0053, P0054, P0059, P0060 P0135, P0141, P0155, P0161 P1133, P1153, P0133, P0153 EvapPurgeSolenoidCirc uit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapEmissionSystem_FA FuelTankPressureSens orCircuit_FA MAF_SensorFA MAP_SensorFA AIR System FA	not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						EthanolCompositionSe		
						nsor_FA 10.0 volts < system		
						voltage< 18.0 volts		
					Learned heater resistance			
					ICAT MAT Burnoff delay Green O2S Condition			
					Green 023 Condition	= Not Valid		
					Low Fuel Condition Diag			
					Engine Speed Engine Airflow	500 <= RPM <= 5000 3 gps <= Airflow <= 20		
						gps 14.9 mph <= Veh		
					Vehicle Speed Closed loop integral	Speed <= 82.0 mph 0.96 <= C/L Int <= 1.04		
					Closed Loop Active	= TRUE		
					·	not in control of purge		
					Post fuel cell			
					Power Take Off	= not active		
					EGR Intrusive diagnostic	= not active		
					All post sensor heater delays	= not active		
					All of the above met for at least commanded off, and then wait		1	
					commanding lea	n ratio.		
					Fuel State	= Refer to "P2271/P2273 - O2		
						Sensor Signal Stuck Rich Bank 1/2 Sensor		
						2" Lean Equiv Ratio		
					During Stuck Lean test the following abort	ng can cause the test to		
					Piston Protection	= Active = Over Temperature		
						·		
					Hot Coolant Enrichment Fuel State	= PE		
					Purge duty cycle	> 0 %		
Secondary AIR System Pressure Sensor Circuit	P2430	This DTC detects a stuck in range pressure sensor signal when the	Average Error and	< 0.50 kPa	BARO Inlet Air Temp	> 60 kPa > 5.0 deg C.	Stuck in range cumulative time >	2 trip(s)
Bank 1		AIR pump is commanded on.	Signal Variation	< 1.00 kPa	Coolant Temp	> 5.0 deg C. < 60.0 deg C.	5.0 seconds	Type B
(For applications with AIR)	I	ı	ļ	l	I	- 50.0 deg O.		i ype D

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						> 3600.0 seconds > 10.0 OR < 18.0 Volts		
				disable conditions:	Engine Speed	< 20 kPa for 2 seconds > 5000 RPM > 50 gm/s for 3 seconds AIRValveControlCircuit FA AIRPumpControlCircuit FA AIRSysPressSnsrB1Ck tLoFA AIRSysPressSnsrB1Ck tHiFA ControllerProcessorPer	Frequency: Once per trip when SAI pump commanded On	
						f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA		
Secondary AIR System Pressure Sensor Performance Bank 1 (For applications with AIR)		This DTC detects a skewed pressure sensor signal via a comparison of the AIR pressure sensor signal and estimated BARO, as well as an evaluation of the quality of the comparison.	Difference between AIR pressure sensor and BARO (Pump Commanded Off) OR Difference between AIR pressure sensor and BARO (Pump Commanded On)	> 14.0 kPa < -10.0 kPa	Inlet Air Temp Coolant Temp Engine off time	> 60 kPa > 5.0 deg C.	Skewed sensor cumulative test weight > 5.0 seconds Continuous 6.25ms loop	2 trip(s) Type B
				> 50.0 kPa	Skewed sensor cumulatative te distance from the last Baro Skewed Sensor V	Baro update		
				disable conditions:	Engine Speed MAF Mo active DTCs:	< 20 kPa for 2 seconds > 5000 RPM > 50 gm/s for 3 seconds Transfer Case not in 4WD Low AIRValveControlCircuit FA AIRPumpControlCircuit FA AIRSysPressSnsrB1Ck tLoFA AIRSysPressSnsrB1Ck tHiFA		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Secondary AIR System	P2432	This DTC detects an out of range	AIR Pressure Sensor signal			MAF_SensorFA ControllerProcessorPer f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA	800 failures out of	
Pressure Sensor Circuit Low Voltage Bank 1 (For applications with AIR)	P2432	low AIR pressure sensor signal	AIR Pressure Sensor signal	< 5 % of 5Vref disable conditions:	No active DTCs:	ControllerProcessorPer f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA	6.25 ms loop Continuous	2 trip(s) Type B
Secondary AIR System Pressure Sensor Circuit Hi Voltage Bank 1 (For applications with AIR)	P2433	This DTC detects an out of range high AIR pressure sensor signal	AIR Pressure Sensor signal	> 94 % of 5Vref disable conditions:	No active DTCs:	ControllerProcessorPer f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA	800 failures out of 1000 samples 6.25 ms loop Continuous	2 trip(s) Type B
Secondary AIR System Shut-off Valve Stuck Open Single Bank System (For applications with AIR)		This DTC detects if one or both of the AIR system control valves is stuck open This test is run during Phase 2 (Pump commanded On, valve commanded closed)	·	< Bank 1 Valve Pressure Error table r > 32.0 kPa	Inlet Air Temp Coolant Temp Engine off time System Voltage Stability Time	> 60 kPa > 5.0 deg C. > 5.0 deg C. < 60.0 deg C. > 3600.0 seconds > 10.0 OR < 18.0 Volts > 0.5 seconds AIR diagnostic Phase 1 passed	Phase 2 Conditional test weight > 2.0 seconds	2 trip(s) Type B
				disable conditions:	Engine Speed MAF	eight Factor eight Factor eight Factor tt Weight Factor est Weight Factor < 20 kPa for 2 seconds	Frequency: Once per trip when AIR nump commanded	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE		ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Secondary AIR System Pump Stuck On Single Bank System (For applications with AIR)	P2444	This DTC detects if the SAI pump is stuck On This test is run during Phase 3 (Pump commanded Off, valve commanded closed)		> Bank 1 Pump Pressure Error table < -32 kPa	BARO Inlet Air Temp Coolant Temp Engine off time System Voltage Stability Time	> 5.0 deg C. > 5.0 deg C. < 60.0 deg C. > 3600.0 seconds > 10.0 OR < 18.0 Volts > 10.0 seconds AIR diagnostic Phase 1 passed AIR diagnostic Phase 2 passed It is based on distance	per trip when AIR	1 trip(s) Type A
					Baro Skewed Sensor V			
				disable conditions:	Engine Speed MAF	< 20 kPa for 2 seconds > 5000 RPM > 50 gm/s for 3 seconds		
						AIRSystemPressureSe nsor FA		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
						AIRValveControlCircuit FA AIRPumpControlCircuit FA MAF_SensorFA MAP_SensorFA IAT_SensorFA ECT_Sensor_FA EngineMisfireDetected _FA CatalystSysEfficiencyL oB1_FA CatalystSysEfficiencyL oB2_FA ControllerProcessorPer f_FA 5VoltReferenceA_FA 5VoltReferenceB_FA IgnitionOutputDriver_F A FuelInjectorCircuit FA		
Transmission Control Torque Request Circuit	P2544	Determines if the torque request from the TCM is valid		Message <> two's complement of message			>= 16 Protect errors during key cycle	2 trip(s)
			Rolling count error - Serial Communication message (\$150 - PPEI2, \$199 - PPEI3) rolling count value ORAM Error - Serial Communication message (\$150 - PPEI2, \$199 - PPEI3)	R Message <> previous message rolling count value + one R Trans torque reduction or type request portion of message 2's complement values <> R	Diagnostic enabled/disabled Power Mode Engine Running Run/Crank Active	Enabled = Run = True > 0.50 Sec	>= 6 Rolling count errors out of ten samples >= 3 RAM errors during key cycle	Туре В
			TCM Requested Torque Increase message \$199 OMulti-transition - Trans torque intervention type request change OSerial communication from TCM	> 400 Nm R Request change from not min limit to min limit R Loss of communication			>= 3 range out of 10 samples >= 3 multi- transitions out of 5 samples > 0.20 seconds	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
							Performed every 12.5 msec	
Torque Management Request Input Signal B (LSA only)	P2548	Determines if the performance launch torque request is valid	Rolling count error - Serial	Message <> two's complement of message OR Message <> previous message rolling count value + one	Diagnostic enabled/disabled Run/Crank Active No active DTC's	Enabled > 0.50 Sec Fault bundles:	>= 10 Protect errors out of 10 samples >= 3 Rolling count errors out of 10 samples Performed every 100 msec	1 trip(s) Type C "Special Type C"
ECM/PCM Internal Engine Off Timer Performance	P2610	This DTC determines if the engine off timer does not initialize or count properly. Clock rate test: Checks the accuracy of the 1 second timer by comparing it with the 12.5 ms timer	Initial ignition off timer value OR Initial ignition off timer value Clock rate test: Time between ignition off timer increments Time between ignition off timer increments Time since last ignition off timer	> 10 seconds < 1 seconds > 1 seconds ≥ 1 seconds	ECM is powered down IAT Temperature	IAC_SystemRPM_FA -40 °C ≤ Temperature ≤ 125 °C	Initial value test: 3 failures 1.375 sec / sample Clock rate test: 8 failures out of 10 samples 1second / sample test runs once each key-off	2 trips Type B DTC sets on next key cycle if failure detected
Four Wheel Drive Low Switch Circuit	P2771	Pail Case 1: Continuous Open (Stuck Off) Fail Case 2: Ground (Stuck On) in the Four Wheel Drive Low Switch Circuit		= Open Boolean <= 8 ratio >= 2.4 ratio <= 1.85 ratio >= 0.65 ratio	Engine Torque High	<= 8192 N-m	>= 2 Fail Time (Sec) >= 7 Fail Time (Sec)	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Engine Torque Low Engine Speed High Engine Speed Low System Voltage High System Voltage Low Throttle Position Sensor High Throttle Position Sensor Low Transmission Temperature High Transmission Temperature Low Engine Run time Vehicle Speed	>= 30 N-m <= 5500 RPM >= 1000 RPM <= 18 V >= 11 V <= 99 % >= 5.0 % <= 130 ° C. >= -20 ° C. >= 10 Sec >= 5 KPH		
				Disable Conditions:	Disabled on these pcodes:	CrankSensorFaultActiv e P2160 P2161 TPS_FA VehicleSpeedSensorEr ror EngineMisfireDetected _FA MAF_SensorTFTKO MAP_SensorTFTKO TransmissionGearDefa ulted		
O2Sensor Circuit Range/ Performance Bank 1 Sensor 1 (LLR, LLV, LL8 only)	P2A00	This DTC determines if the O2 sensor voltage is not meeting the voltage criteria to enable closed loop fueling.	Closed Loop O2S ready flag A) O2S signal must be 1) O2S signal OR 2) O2S signal To set Closed Loop ready flag Closed Loop O2S ready flag B) Once set to ready O2S cannot be 1) O2S signal AND 2) O2S signal for time Then set Closed Loop ready flag	< 350 mvolts = True = True > 350 mvolts	System Voltage Engine Speed Engine Airflow Engine Coolant Engine Metal Overtemp Active Converter Overtemp Active	P0132, P0152 10.0 volts < system voltage< 18.0 volts 1000 RPM <= Engine speed <= 3400 RPM 10.0 gps <= Engine Airflow<= 50.0 gps >= 70.0 °C = False	200 failures out of 250 samples. Frequency: Continuous 100msec loop	2 trips Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Circuit Range/Performance Bank 1 Sensor 2 (LS7 only)	P2A01	This DTC determines if the post catalyst O2 sensor is stuck in a normal voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which increases or reduces delivered fuel to achieve the required rich or lean threshold.	Post O2 sensor cannot achieve the rich threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Lean Voltage Test is greater than the threshold before the above voltage threshold is met. OR Post O2 sensor cannot achieve the lean threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Rich Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal >= 805 mvolts AND Accumulated air flow > 550 grams for the stuck lean test. OR 2) Post O2S signal <= 150 mvolts AND Accumulated air flow during > 550 grams for the stuck rich test.	Predicted Exhaust Temp (B1S1) Engine run time Fuel Enrichment All of the above met for Time No Active DTC's	>= 0.0 °C > 100 seconds = Not Active > 5 seconds TPS_ThrottleAuthority Defaulted P0131, P0137, P0151, P0157 P0132, P0138, P0152, P0158 P0134, P0140, P0154, P0160 P0053, P0054, P0059, P0060 P0135, P0141, P0155, P0161 P1133, P1153, P0133, P0153 EvapPurgeSolenoidCircuit_FA EvapFlowDuringNonPurge_FA EvapPemissionSystem_FA EvapEmissionSystem_FA FuelTankPressureSens orCircuit_FA MAF_SensorFA MAP_SensorFA AIR System FA FuelInjectorCircuit_FA	Frequency: Once per trip Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled	2 trips Type B
						FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA 10.0 volts < system voltage< 18.0 volts = Valid	new and cannot be	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					ICAT MAT Burnoff delay Green O2S Condition			
					Low Fuel Condition Diag Engine Speed Engine Airflow	= False 500 <= RPM <= 5000 3 gps <= Airflow <= 20 gps 24 mph <= Ven Speed		
					Vehicle Speed Closed loop integral	<= 132 mph 0.95999 <= C/L Int <= 1.04		
					Closed Loop Active Evap Ethanol Post fuel cell	not in control of purge not in estimate mode		
					Power Take Off EGR Intrusive diagnostic	= not active = not active		
					All post sensor heater delays All above met and then fuel i Fuel State	s commanded Rich		
						Lean Bank 1 Sensor 2" Rich Equiv Ratio table in the Supporting		
					During Stuck Lean test the following Stuck Lean test the following abort Fuel State Fuel State	= DFCO = PE		
					Purge duty cycle	> 0 %		
					All of the above met for at least commanded off, and then wait commanding lea	5.0 seconds before a n ratio. Refer to "PZAU1 - UZ		
						Sensor Signal Stuck Rich Bank 1 Sensor 2" Lean Equiv Ratio table in the Supporting		
					During Stuck Lean test the following Stuck Lean test the following abort	ng can cause the test to		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
O2 Sensor Circuit Range/Performance Bank 2 Sensor 2 (LS7 only)	P2A04	This DTC determines if the post catalyst O2 sensor is stuck in a normal voltage range and thereby can no longer be used for post oxygen sensor fuel control or for catalyst monitoring. The diagnostic is an intrusive test which increases or reduces delivered fuel to achieve the required rich or lean threshold.	Post O2 sensor cannot achieve the rich threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Lean Voltage Test is greater than the threshold before the above voltage threshold is met. OR Post O2 sensor cannot achieve the lean threshold voltage. AND The Accumulated mass air flow monitored during the Stuck Rich Voltage Test is greater than the threshold before the above voltage threshold is met.	1) Post O2S signal >= 805 mvolts AND Accumulated air flow > 550 grams for the stuck lean test. OR 2) Post O2S signal <= 150 mvolts AND Accumulated air flow during > 550 grams for the stuck rich test.	Hot Coolant Enrichment Fuel State Purge duty cycle No Active DTC's	= Over Temperature = Active = PE > 0 % TPS_ThrottleAuthority Defaulted P0131, P0137, P0151, P0157 P0132, P0138, P0152, P0158 P0134, P0140, P0154, P0160 P0053, P0054, P0059, P0060 P0135, P0141, P0155, P0161 P1133, P1153, P0133, P0153 EvapPurgeSolenoidCirc uit_FA EvapFlowDuringNonPu rge_FA EvapVentSolenoidCirc uit_FA EvapSmallLeak_FA EvapEmissionSystem_FA FuelTrimSystemB1_FA FuelTrimSystemB1_FA FuelTrimSystemB1_FA FuelTrimSystemB2_FA EngineMisfireDetected _FA EthanolCompositionSe nsor_FA 10.0 volts < system voltage < 18.0 volts	Green Sensor Delay Criteria The diagnostic will not be enabled until the next ignition cycle after the following has been met: Airflow greater than 22 gps for 120000 grams of accumulated flow non-continuously. (Note that all other enable criteria must be met on the next ignition cycle for the test to run on that ignition cycle). Note: This feature is only enabled when the vehicle is new and cannot be	2 trips Type B
					ICAT MAT Burnoff delay	= Not Valid		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Green O2S Condition	= Not Valid		
					Low Fuel Condition Diag Engine Speed Engine Airflow	500 <= RPM <= 5000 3 gps <= Airflow <= 20		
					Vehicle Speed Closed loop integral	gps 24 mph <= Veh Speed <= 132 mph 0.95999 <= C/L Int <= 1.04		
					Closed Loop Active Evap Ethano	not in control of purge not in estimate mode		
					Post fuel cell Power Take Off EGR Intrusive diagnostic	= not active		
					All post sensor heater delays			
					All above met and then fuel i Fuel State			
					During Stuck Lean test the follow abort Fuel State Fuel State Purge duty cycle	= DFCO = PE		
					All of the above met for at least commanded off, and then wait commanding lea	5.0 seconds before a		
					Fuel State	Refer to "PZAU4 - OZ Sensor Signal Stuck Rich Bank 2 Sensor 2" Lean Equiv Ratio table in the Supporting		
					During Stuck Lean test the follow abort Piston Protection Converter Mode			

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
					Hot Coolant Enrichment Fuel State Purge duty cycle	= PE > 0 %		
Deactivation System Performance (AFM applications only)	P3400	Detects a "failed to deactivate" condition when Deactivation Mode allowed:	ABS(Measured MAP – MAP Model 2) Filtered AND ((Measured MAP – MAP Model 2) filtered) (stored from previous all- Cylinder mode event) - ((Measured MAP – MAP Model 2) filtered) (current)	< -8.0 kPa	DIAGNOSTIC ENABLE Total filtered residual weight factors	>= 0 factor > -20 and < 125 Deg C > -20 and < 125 Deg C > -20 and < 125 Deg C > 450 and < 5750 RPM MAP Model 2 multiplied by MAP2 Residual Weight Factor based on RPM. See table IFRD Residual NABLE CONDITIONS or >= 0 seconds before will begin)	100 cylinder deactivation lag residual failures out of 200 samples Performed once every 100 msec	2 trip(s) Type B

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					AC Clutch transition	progress		
					Tip In Bump	Not active		
					Accelerator pedel delta			
						<= 50.0 Percent		
					Engine oil pressure	>= 187 and <= 455 kPa		
					Filtered engine vacuum	>		
					•	AllCylToHalfCylVacuu		
						m or		
						EcoAllCylToHalfCylVac		
						uum (in Eco mode) -		
						See details on		
						Supporting Tables Tab (P3400 Section) for 0		
					PRNDL state	(F3400 Section) for 0		
					I TOOL State	HalfCylDisabledPRNDL		
						and		
						HalfCylDisabledPRNDL		
						DeviceControl tables		
						(when in device control)		
						- See details on		
						Supporting Tables Tab (P3400 Section)		
					Oil aeration present	(F3400 Section)		
					Oil aeration present			
						Aeration enabled by engine RPM > 5000 for		
						15 seconds, disabled		
						by engine RPM < 4000		
						for 90 seconds		
					After exiting deac mode, must be			
					in all cylinder mode for			
						>= 60 seconds		
					DFCO mode	Not ourrontly in DECO		
					Fuel shut off mode other than	Not currently in DFCO Not currently in fuel		
					DFCO	shut-off		
					ETC Power management mode			
1					-			
					Harder Book	Not active Not in Heater		
					Heater Perf.	Performance Mode		
					POSD Intrusive	POSD diagnostic not		
						active		
					POPD Intrusive	POPD diagnostic not		
						active		
					Low range 4WD	Notice to Book and		
					Vahiala anaad	Not in Low Range 4WD >= 22 Kph		
					Vehicle speed AFM is disabled at high percent	>= 22 Kpn Ethanol concentration >		
					i w is disabled at high percent			

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					ethanol If feature is enabled, AFM is allowed only when percent ethanol learn is not in progress	95 % disables AFM. Once disabled, ethanol concentration must be < 90 % to re-enable Feature is Disabled		
					IF DEACTIVATED, ANY OF THE WILL FORCE CYLINDER If deactivation mode is active for then reactivation will occur if: Deac mode active OR Delta vacuum Engine RPM			
					Engine Power Limited Mode Pct throttle pedal Piston protection Engine Oil Temperature Engine Oil Pressure Oil aeration present Engine Metal Overtemp	Active > 6 Percent Active < 18 kPa or > 130 kPa < 172 kPa or > 470 kPa Aeration enabled by engine RPM > 5000 for 15 seconds, disabled by engine RPM < 4000 for 90 seconds		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					Accelerator pedel delta in device control only, when in Park or Neutral, engine RPM Trans Gear	Active <= 50.0 percent <= 0.0 Kph AllCylDisabledTransGr- See details on Supporting Tables Tab (P3400 Section)		
					PRNDL state	HalfCylDisabledPRNDL and HalfCylDisabledPRNDL DeviceControl tables (when in device control) - See details on Supporting Tables Tab (P3400 Section)		
					Ignition voltage Engine Coolant Vehicle speed Brake booster vacuum Pct Throttle Pedal Filtered engine vacuum	< 11.0 or > 18.0 Volts < 40.0 or > 125.0 Deg C < 22.0 KPH < 40.0 kPa < 6 Percent > HalfCylToAllCylVacuu m or EcoHalfCylToAllCylVac uum (in Eco mode) - See details on Supporting Tables Tab (P3400 Section) for 0		
					ETC Power management mode Converter overtemp protect Hot Coolant Mode Engine running Engine overspeed protection Gear Shift	(P3400 Section) for 0 Active Active Active = False Active In progress		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					AC Clutch transition Tip In Bump Engine Metal Overtemp Protect Cat. Temp Low POSD Intrusive FWD Engine Misfire Heater Performance POPD Intrusive	In progress Active Active Active Active In low range Detected Active Active		
					No active DTC's	Fault bundles: Map_SensorFA VehicleSpeedSensorEr ror ECT_Sensor_FA EOP_Sensor_FA PowertrainRelayFault BrakeBoosterSensorFA CrankSensorFA CAMSensorFA (SylnderDeacDriverTFT KO FourWheelDriveLowSt ateValid EngineTorqueEstInacc urate TransmissionGearDefa ulted EnginePowerLimited		
Cylinder 1 Deactivation Solenoid Control Circuit (AFM applications only)	P3401	Checks the Solenoid Control Circuit electrical integrity for cylinder #1	The ECM detects that commanded state of driver and actual state of the control circuit do not match. (Short to ground, short to voltage, open circuit)		Engine RPM Ignition Voltage Diagnostic enabled/disabled	<= 18.0 and >= 11.0 Volts	20 failures out of 25 samples Performed every 250 msec	2 trip(s) Type B
Cylinder 4 Deactivation Solenoid Control Circuit	P3425	Checks the Solenoid Control Circuit electrical integrity for	The ECM detects that commanded state of driver and		Engine RPM		20 failures out of	2 trip(s)

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
(AFM applications only)		cylinder #4	actual state of the control circuit do not match. (Short to ground, short to voltage, open circuit)		Ignition Voltage Diagnostic enabled/disabled	<= 18.0 and >= 11.0 Volts Enabled	Performed every 250 msec	Туре В
Cylinder 6 Deactivation Solenoid Control Circuit (AFM applications only)	P3441	Checks the Solenoid Control Circuit electrical integrity for cylinder #6	The ECM detects that commanded state of driver and actual state of the control circuit do not match. (Short to ground, short to voltage, open circuit)		Engine RPM Ignition Voltage Diagnostic enabled/disabled	>= 400.0 RPM <= 18.0 and >= 11.0 Volts Enabled	20 failures out of 25 samples Performed every 250 msec	2 trip(s) Type B
Cylinder 7 Deactivation Solenoid Control Circuit (AFM applications only)	P3449	Checks the Solenoid Control Circuit electrical integrity for cylinder #7	The ECM detects that commanded state of driver and actual state of the control circuit do not match. (Short to ground, short to voltage, open circuit)		Engine RPM Ignition Voltage Diagnostic enabled/disabled	>= 400.0 RPM <= 18.0 and >= 11.0 Volts Enabled	20 failures out of 25 samples Performed every 250 msec	2 trip(s) Type B
Control Module Communication Bus A Off	U0073	This DTC monitors for a BUS A off condition	Bus off failures out of these samples	≥ 5 counts ≥ 5 counts	CAN hardware is bus OFF for	≥ 0.0375 seconds	Diagnostic runs in 1000 ms loop	Type B 2 trips
Lost Communication With TCM	U0101	This DTC monitors for a loss of communication with the transmission control module	Message is not received from controller for this many counts out of these samples	12 counts 12 counts	Run/Crank Voltage Power mode is RUN Communication bus is not OFF or is typed as a C code Normal Communication is enabled Normal Transmit capability is TRUE The diagnostic system is not disabled The bus has been on for A message has been selected to monitor.	11 volts ≤ Voltage ≤ 18 volts > 3.0000 seconds	The diagnostic runs in the 1000 ms loop	Type B 2 trips
Lost Communication with Transfer Case Control Module (For applications with an electronic transfer case)	U0102	This DTC monitors for a loss of communication with the transfer case control module	Message is not received from controller for this many counts out of these samples	12 counts 12 counts	Run/Crank Voltage Power mode is RUN Communication bus is not OFF	11 volts ≤ Voltage ≤ 18 volts	The diagnostic runs in the 1000 ms loop	Type B 2 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
					or is typed as a C code Normal Communication is enabled Normal Transmit capability is TRUE The diagnostic system is not disabled The bus has been on for A message has been selected to monitor.	> 3.0000 seconds		
Lost Communication With Fuel Pump Control Module (For applications with a fuel pump control module)	00.00	This DTC monitors for a loss of communication with the fuel pump control module	Message is not received from controller for this many counts out of these samples	12 counts 12 counts	Run/Crank Voltage Power mode is RUN Communication bus is not OFF or is typed as a C code Normal Communication is enabled Normal Transmit capability is TRUE The diagnostic system is not disabled The bus has been on for A message has been selected to monitor.		•	Type B 2 trips
Lost Communication With Vehicle Dynamics Control Module (LSA only)	U0122		Message is not received from controller for this many counts out of these samples	12 counts 12 counts	Run/Crank Voltage Power mode is RUN Communication bus is not OFF or is typed as a C code Normal Communication is enabled Normal Transmit capability is TRUE The diagnostic system is not disabled The bus has been on for A message has been selected to monitor.	> 3.0000 seconds	runs in the 1000 ms loop	Type B 2 trips
Lost Communication With Body Control Module	U0140		Message is not received from controller for this many counts	12 counts	Run/Crank Voltage		The diagnostic runs in the 1000 ms loop	Type C 1 trips

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
			out of these samples		Power mode is RUN Communication bus is not OFF or is typed as a C code Normal Communication is enabled Normal Transmit capability is TRUE The diagnostic system is not disabled The bus has been on for A message has been selected to monitor.	> 3.0000 seconds		"Special Type C"

LOOK-UP TABLES

P0442: EONV Pressure Threshold Table (in Pascals)

X axis is fuel level in %

	T axis is tempe	rature in deg C															
	0.0000	6.2485	12.4969	18.7454	24.9939	31.2424	37.4908	43.7393	49.9878	56.2363	62.4847	68.7332	74.9817	81.2302	87.4786	93.7271	99.9756
-10.0000	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
-4.3750	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
1.2500	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
6.8750	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
12.5000	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
18.1250	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
23.7500	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
29.3750	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
35.0000	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
40.6250	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
46.2500	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
51.8750	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
57.5000	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
63.1250	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
68.7500	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
74.3750	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632
80.0000	-809.5442	-764.7857	-718.0813	-673.3228	-628.5644	-583.8059	-537.1014	-492.3430	-447.5845	-402.8261	-356.1216	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632	-311.3632

P0442: Estimate of Ambient Temperature Valid Conditioning Time

EAT Valid Conditioning Time (in seconds)

Axis is Ig Axis	niti	on Off Time (in Curve
- TANO	0	300
-	300	450
	200	500
	300	600
	100	650
30	000	650
	600	650
42	200	650
48	300	650
54	400	650
60	000	625
66	600	600
72	200	575
	300	550
84	400	525
90	000	500
90	600	480
	200	460
	300	440
	700	420
	600	400
135	500	380
144	400	360
153	300	340
	200	320
17	100	300
	000	280
	200	260
	400	240
	600	220
	300	200
	000	200
252	200	200

P0496: Purge Valve Leak Test Engine Vacuum Test Time (Cold Start) as a Function of Fuel Level

Purge Valve Leak Test Engine Vacuum Test Time (in seconds)
Axis is Fuel Level in %
Axis Curve

LOOK-UP TABLES

P0461, P2066, P2636: Transfer Pump Enable

TransferPumpOnTimeLimit (in seconds)

Axis is Fuel Axis	Level in % Curve
0	C
3	C
6	C
9	C
13	C
16	C
19	C
22	C
25	C
28	C
31	C
34	C
38	C
41	C
44	C
47	C
50	C
53	C
56	C
59	C
63	C
66	C
69	C
72	C
75	0
78	C
81	C
84	C
88	C
91	C
94	C
97	C
100	C

CATD Section

MinimumEngineRunTime

Coolant Temp	40	50	60	70	80
Engine Run Time	100	100	100	100	100

MinCatTemp		X_AXIS_PTS
CATD_ExhaustWarmMin_Loc_0	420	(
CATD_ExhaustWarmMin_Loc_1	420	1
CATD_ExhaustWarmMin_Loc_2	420	2
CATD_ExhaustWarmMin_Loc_3	420	3
CATD_ExhaustWarmMin_Loc_4	420	4
CATD_ExhaustWarmMin_Loc_5	420	
CATD_ExhaustWarmMin_Loc_6	420	6
CATO Fulcion March March 1 7	400	-

MinAirflowToWarmCatalyst											
Engine Coolant	. 0	45	91								
Min Air Flow ToW/rmCat	20	10	- 1								

Define Close Loop
KIFSTA T ClosedLoopTemp

Start-Up Coolant	-40	-28	-16	-4	8	20	32	44	56	68	80	92	104	116	128	140	152
Close Loop Enable Temp	85	80	75	65	45	39	39	39	39	39	39	39	39	39	39	39	39
KtFSTA t ClosedLoopTime																	

P0326 Knock Detection Enabled Factors:

FastRtdMax:

X - axis = Engine Speed (RPM) Y - axis = Manifold Pressure (kPa)

	0	512	1024	1536	2048	2560	3072	3584	4096	4608	5120	5632	6144	6656	7168	7680	8192
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
50	0.0	1.5	2.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
60	0.0	1.5	2.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
70	0.0	1.5	3.0	6.0	6.0	6.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
80	0.0	1.5	3.0	6.0	6.0	6.0	8.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
90	0.0	1.5	3.0	6.0	6.0	6.0	8.0	9.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
100	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
110	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
120	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
130	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
140	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
150	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
160	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
170	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
180	0.0	1.5	3.0	6.0	6.0	6.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0

LOOK-UP TABLES

Manage Datast	 	

Knock Detection Enablec = FastAttackRate * FastAttackCoolGain * FastAttackBaroGain

Property		Knock Detection Enablec = F	astAttackRate * F	FastAttackCoolGair	n * FastAttackBard	Gain													
PLIPPE STATE OF THE PROPERTY O																			
Fig. 12 10 10 10 10 10 10 10 10 10 10 10 10 10																			
Page		rasimilachnaie.	0.00	2.30	2.30	2.03	3.00	3.00	3.00	3.00	3.30	3.30	3.30	3.30	3.30	3.30	3.30	3.30	3.30
Page		FOT (4 0):	40	20	20	40		40	20	20	40	50		70			400	440	400
Page 1987 Seed Confusion 1		FastAttackCoolGain:																	
Part																			
Part		Raro	55.00	61 25	67 50	73.75	80.00	86.25	92 50	98 75	105.00								
Page																			
Page	D0227/D0222 Shortl owThrook																		
Marie Mari		•																	
Postport for Carriers Program P			90							125									
## Page 12 The preparation lay C. B.		ShortLowThresh:	34000	34000	34000	34000	34000	34000	34000	34000	34000	32000	30000	28000	26000	24000	22000		
## Page 12 The preparation lay C. B.																			
Page																			
## Month	ritadiii donadiidi, Edi Ediii	Engine Oil Temperature (deg C)	90																
Color Colo		ShortHiThresh:	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000	60000		
Color Colo																			
Page	AFIM Section																		
## 1500 1500																			
1 1500 150	AvgFlow / AvgRPM																		
100 1500 1																			
200 1500 1						12496	12496	12496	12496	12496				20000	20000	20000	20000		
240 1500 1500 1500 1500 1500 1500 1500 15																			
100 100		240 15008 15008	15008	15008	15008	12352	11008	10368		11504	11008	15008	15008		20000		20000		
Substitution 1500																			
460 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 2000 2																			
According 15008										10000									
Section 15000 15																			
Columb 1500		520 15008 15008	15008	15008	15008	15008	15008	10144		11248		15008	15008		20000		20000		
Total 15008 1500																			
No.		720 15008 15008				15008				15008		15008	15008						
Aug/Flow Aug/Flow 2505 500 750 1000 1250 1500 1750 2000 22500 22500 22500 2000		800 15008 15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	20000	20000	20000	20000		
40 25008 2								KtOXYD_c	mp_AFIM_Lngtl	hThrsh1_DoD									
Ref 25008	AvgFlow / AvgRPM																		
160		80 25008 25008					25008						25008				25008		
200 25088 25088 2508 2508 2508 2508 2508																			
240																			
320 25008		240 25008 25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008		
Second 25008 250																			
440						25008													
## 400 25008																			
Second S																			
Fig.																			
Reg 25008																			
AvgFlow / AvgRPM																			
AvgFlow / AvgRPM		800 25008 25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008		
40																			
80 15008 1	AvgHow / AvgRPM																		
160		80 15008 15008	15008	15008	15008	12496	12496	12496	12496	12496	12496	15008	15008	20000	20000	20000	20000		
200 15008 15008 15008 15008 15008 15008 15008 12496 12496 12496 12496 12496 12496 15008 20000 20																			
15008 1500		200 15008 15008	15008	15008	15008	12496	12496	12496	12496	12496	12496	15008	15008	20000	20000	20000	20000		
320 15008 15008 15008 15008 15008 15008 15008 11088 11824 10000 10000 10000 15008 15008 20000 20000 20000 20000 20000 380 15008 1500		240 15008 15008				13488	11008	10000		10000		15008	15008		20000		20000		
360 15008 15008 15008 15008 15008 15008 15008 15008 11504 12752 10128 10000 10416 10000 15008 15008 20000																			
440 15008 15008 15008 15008 15008 15008 15008 11008 10192 13632 10000 10368 10912 15008 15008 20000 20		360 15008 15008	15008	15008	15008	11504	12752	10128	10000	10416	10000	15008	15008	20000	20000	20000	20000		
480 15008 15																			
520 15008 1		480 15008 15008	15008	15008		21344	15008	11872	10720	10384	13088	15008	15008						
640 15008 15008 15008 15008 15008 15008 15008 15008 15008 14768 11952 19152 13664 20000 20000 20000 20000 720 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 20000 20000 20000 20000		520 15008 15008		15008		15008	15008	12944	11856	11872		15008	15008	20000	20000	20000	20000		
720 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 20000 20000 20000	1																		
800 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 15008 2000 2000 2000 2000		720 15008 15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	20000	20000	20000	20000		
		800 15008 15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	15008	20000	20000	20000	20000		

								LOOK-UP										
AvgFlow / AvgRPM	1	250	500	750	1000	1250	1500	1750		_cmp_AFIM_Lng 2250	gthThrsh2_DoD 2500	2750	3000	3500	4000	4500	5000	6000
Avgriow / AvgRPW	40	25008	25008	25008	25008	25008	25008	25008	2000 25008	25008	25008	25008	25008	25008	25008	25008	25008	
	80	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008
	120 160	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008								
	200	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008 25008
	240	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008
	280 320	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008 25008	25008	25008	25008
	360	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008	25008 25008	25008 25008	25008 25008								
	400	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008
	440	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008
	480 520	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008								
	560	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008
	640	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	25008	
	720 800	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008	25008 25008								
L 51 (4 DD14		050	500	750	4000	4050	4500	4750		XYD_K_AFIM_Q		0750	0000	0500	4000	4500	5000	
AvgFlow / AvgRPM	40	250 0		750 0	1000	1250 0	1500 1	1750 1	2000	2250 1	2500 1	2750 1	3000 1	3500 1	4000 1	4500 1	5000 1	6000
	80 120	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	160	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	200	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
-	240	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
<u> </u>	280 320	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	360	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
<u> </u>	400 440	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1
<u> </u>	480	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	520	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
<u> </u>	560	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
—	720	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
										D_K_AFIM_Qual		1	1					
AvgFlow / AvgRPM	40	250 1	500	750 1	1000	1250	1500	1750	2000	2250	2500	2750	3000	3500 1	4000	4500 1	5000	6000
	80	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	120	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
	160 200	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1
	240	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	280	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	320 360	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	400	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	440 480	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	520	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	560	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	640 720	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
L C / 2004		050	500	750	4000	4050	4500	4750		XYD_K_AFIM_Q		0750	0000	0500	4000	4500		
AvgFlow / AvgRPM	40	250 0	500	750 0	1000	1250	1500 1	1750 1	2000	2250 1	2500 1	2750	3000 1	3500 1	4000 1	4500 1	5000 1	6000
	80	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
<u> </u>	120 160	0			0	0	1	1	1	1		1	1	1	1	1	1	1
	200	0	0	0	0	0	1	1	1	1		1	1	1	1	1	1	1
	240	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
—	280 320	0	0	0	0	0	1	1	1	1		1	1	1	1	1	1	1
	360	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
	400	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	440 480	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	520	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	560	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	640 720	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
									K+OYVI	D_K_AFIM_Qual	Eactor? DoD							
AvgFlow / AvgRPM		250	500	750	1000	1250	1500	1750	2000	2250		2750	3000	3500	4000	4500	5000	6000
<u> </u>	40 80	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	120	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	160	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
-	200 240	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
	280	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
	320	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
ļ	360 400	1	1	-	1	1	1	1	1	1		1	1	1	1	1	1	1
	440	1	1		1	1	1	1	1	1		1	1	1	1	1	1	1
	480	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
-	520 560	1			1	1	1	1	1	1		1	1	1	1	1	1	1
	640	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1
	720	1	1		1	1	1			1	1	1	1	1	1	1	1	1

Section Process Proc								LOOK-U	P TABLES									
Series Series 1									Define Close Lo	оор								
## A 1 1 1 1 1 1 1 1 1 1	KtFSTA_T_ClosedLoopTemp	-40	-28	-16		41 8	201	32	441	56	68	ani	92	104	116	128	140	1:
## STREET OF THE PROPERTY OF T		85		75	6	5 45	39						39	39	39	39	39	
March 10 10 10 10 10 10 10 1		•	•							•					•	•		
Control point 1	Start-Up Coolan	-40	-28	-16		4 8	20	32	44	56	68	80	92	104	116	128	140	1:
18	Close Loop Enable Time	120	90	65	4	5 25	10		10			10	10	10	10	10	10	
Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Pa	Tables supporting Clutch Diagnos	tion																
## A TRANSPORT TABLE ## A TRAIL SPORTS CHANNING PROMISED AS SOURCE STATES \$1,000		1103																
AND SECTION OF STATE WEIGHT FLOWER STATE S	P0606	EngTorqueThr	eshold Table			AXIS is Percent	Clutch Petal Posi	tion. 0 = bottom	of travel									
Property of the Control of the Contr		·	6.2485															99.9
Part	Curve	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0806																	
Part 10 10 10 10 10 10 10 1					4.0													
Residentification floating for Table 12 2 20 20 20 20 20 20 20 20 20 20 20 20																		
March Column Co		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0									
State supporting ATT Disposed Bash 1 Table 12	20806	Danish al Farant				AVIC :- C												
The color of the	Axis	1st	2nd	3rd	4th		6th	rev	neutral									
Site Threshold Bank Table						0.0												
Asia is everage engine airfloor during test in genines: Si. Threshold Bank 1 Table	ables supporting AIP Disapportion																	
St. Three-hold Bank 1 Table		•																
10	P0411	SI Threehold	Rank 1 Tahlo				avis is averses o	ngine airflow de	ring test in am/o	ec								
Section Sect	Axis			6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	33.0	36.0	39.0	42.0	45.0	48.0
Phase I Bay Test Weight Factor				35.0								35.0	35.0	35.0				35.0
Phase 1 Baro Test Weight Factor axis is Baro in Npa Axis Durve Axis Baro 10 10 10 10 10 10 10 1	P0/11																	
March Marc	-0411	Phase 1 Baro 1	Test Weight Fa	actor		axis is Baro in K	Гра											
Polate I MAF Test Weight Factor		40	50	60														
Phase 1 MAF Test Weight Factor axis is engine airflowing injusion. In the phase 1 System Vol 1 to 10 10 10 10 10 10 10 10 10 10 10 10 10	Curve	0.0	0.0	0.5	1.0	1.0	1.0	1.0	1.0	0.0								
No. 1	20411																	
Place 1						axis is engine ai	rflow in gm/sec	40.0								40.0	45.0	
Phase 1 System Volt Test Weight Factor axis is engine airflow in gmbac. Axis 5.0 1.0 7.0 1.0 0.0 0.0 0.0 0.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																		48.0 0.0
Phase 1 System Volt Test Weight Factor															2.0	0	0	
So	P0411	Dhace 4 Com	n Volt T	olaht Ea-t		avia ia!	eflow in contra											
Phase 1 Amb Temp Test Weight Factor axis is Baro in Kpa	Axis	5.0			8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0
Phase 1 Amb Temp Test Weight Factor																		0.0
Phase 1 Amb Temp Test Weight Factor		-		<u> </u>		•		<u>.</u>		•								
Axis 30 20 -10 0 10 20 30 40 50	P0411	Phase 1 Amb 1	emp Test We	ight Factor		axis is Deg C												
P02440 Axis		-30	-20	-10		10												
Axis Saro Skewed Sensor Weight Factor axis is distance traveled from last Baro update in Km 10.0 2.0 4.0 6.0 6.0 6.0 0.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 2	Curve	0.0	0.0	0.0	0.5	1.0	1.0	1.0	1.0	1.0								
Axis Saro Skewed Sensor Weight Factor axis is distance traveled from last Baro update in Km 1.0 0.0 0.2 0.4 0.5 0.5 0.3 0.0	P02431	P02440																
10		Baro Skewed S																
P02440 Bank 1 Valve Pressure Error																		32.0 0.0
Bank 1 Valve Pressure Error axis weighted time in seconds Curve	Curve	1.0	0.6	0.5	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Axis Curve	P02440																	
Page 2 Baro Test Weight Factor axis is Baro in Kpa	Avie				3			6	7	8								
Phase 2 Baro Test Weight Factor																		
Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis Sol 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 Curve O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																		
Axis	P02440	Phase 2 Raro 1	est Weight F	actor		axis is Baro in K	(na											
Plase 2 MAF Test Weight Factor axis is engine airflow in gm/sec	Axis				70			100	110	120								
Axis Phase 2 MAF Test Weight Factor axis is engine airflow in gm/sec Axis O.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0 39.0 42.0 45.0 P02440 Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 Curve D.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.0 P02440 P	Curve	0.0	0.0	0.5		1.0	1.0	1.0										
Axis Phase 2 MAF Test Weight Factor axis is engine airflow in gm/sec Axis O.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0 39.0 42.0 45.0 P02440 Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 Curve D.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.0 P02440 P	P02440																	
Axis		Phase 2 MAF 1	est Weight Fa	actor		axis is engine ai	rflow in gm/sec											
Phase 2 System Volt Test Weight Factor axis is engine airflow in gm/sec Axis 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 Curve 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.5 0.0 0.0 Pose 2 Amb Temp Test Weight Factor axis is Deg C Axis 30 -20 -10 0 10 20 30 40 50		0.0	3.0	6.0		12.0	15.0											48.0
Phase 2 System Volt Tost Weight Factor axis is engine airflow in gm/sec Axis 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 Curve 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.0 0.0 Pose440 Phase 2 Amb Temp Test Weight Factor axis is Deg C Axis 30 -20 -10 0 10 20 30 40 50	Jurve	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0	0.0
Axis 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 Curve 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P02440																	
Curve 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.0 1.0 1.0 1.0 1.0 0.8 0.5 0.0 0.0 -02440 -02	Ai.							44.5	40.0	42.2	44.0	45.0	40.0	47.0	40.2	40.0	20.2	
P02440 Phase 2 Amb Temp Test Weight Factor axis is Deg C Axis -30 -20 -10 0 10 20 30 40 50																		21.0 0.0
Phase 2 Amb Temp Test Weight Factor axis is Deg C Axis -30 -20 -10 0 10 20 30 40 50		3.0		0	2.0	3.0	2.0	0								0	0	
Axis -30 -20 -10 0 10 20 30 40 50	P02440	Dhace 2 A 3	omn T 17	ight East		avia ia D C												
	Axis				0		20	30	40	50								

FASD Section	on																
P0171 & P0174	Long Term Trim L	.ean															
6 Ethanol	0.00	6.25	12.50	18.75	24.99	31.24	37.49	43.74	49.99	56.24	62.48	68.73	74.98	81.23	87.48	93.73	9
ong Term Fuel Trim Lean Thresho	old 1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	
0172 & P0175	Non Purge Rich L	imit															
Ethanol	0.00	6.25	12.50	18.75	24.99	31.24	37.49	43.74	49.99	56.24	62.48	68.73	74.98	81.23	87.48	93.73	-
ong Term Fuel Non-Purge Rich T		0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	
20170 0 20175																	
P0172 & P0175 % Ethanol	Purge Rich Limit 0.00	6.25	12.50	18.75	24.99	31.24	37.49	43.74	49.99	56.24	62.48	68.73	74.98	81.23	87.48	93.73	
Long Term Fuel Purge Rich Thresh		0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	
<u> </u>																	
P0171, P0172, P0174 & P0175	Closed Loop Enal	alo Toma vro (Coolant Town			The fo	llowing tables de	fine when the e	ngine goes close	ed loop							
Start-Up Coolant	-40	-28	-16	-4	8	20	32	44	56	68	80	92	104	116	128	140	
Close Loop Enable Temp	85	80	75	65	45	39	39	39	39	39	39	39	39	39	39	39	
P0171, P0172, P0174 & P0175	Closed Loop Ena					20	32	44	56	68	80	92	104	116	128	140	
Start-Up Coolant Close Loop Enable Time	-40 120	-28 90	-16 65	-4 45	8 25	10	10	10	10	10	10	10	104	116	128	140	
JOSE LOOP ETIABLE TITLE	120	90	03	45	23	10	10	10	10	10	10	10	10	10	10	10	
P0101, P0106, P0121, P012B, P1	101: IFRD Residual TPS Residual Wei																
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	1.000	1.000	1.000	1.000	1.000	1.000	0.868	0.803	0.746	0.631	0.586	0.513	0.429	0.456	1.000	1.000	1.000
DDM	MAF Residual We			4050	4750	2250	0750	2250	2750	4050	4750	5050	5750	COEO	6750	7050	0000
RPM	1.000	1.000	750 0.890	1250 0.916	1750 0.728	2250 0.646	2750 0.600	3250 0.556	3750 0.531	4250 0.522	4750 0.507	5250 0.534	5750 0.527	6250 0.455	1.000	7250 1.000	9000
	MAF Residual We				0.720	0.040	0.000	0.550	0.551	0.322	0.307	0.554	0.327	0.433	1.000	1.000	1.000
ım/sec	0.0	40.0	47.0	56.0	67.0	79.0	93.0	111.0	131.0	156.0	184.0	218.0	259.0	307.0	363.0	431.0	510.0
	1.000	1.000	0.909	0.836	0.773	0.719	0.660	0.584	0.501	0.408	0.336	0.294	0.268	0.243	0.219	0.191	0.159
	MAP1 Residual W	eight Factor b	pased on RPM														
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	1.000	0.714	0.762	0.761	0.845	0.787	0.704	0.749	0.688	0.780	0.709	0.787	0.661	0.579	1.000	1.000	1.000
RPM	MAP2 Residual W			1050	4750	0050	0750	0050	0750	1050	4750	5050	5750	0050	0750	7050	
RPIVI	1.000	250 0.904	750 0.893	1250 0.708	1750 0.688	2250 0.676	2750 0.657	3250 0.701	3750 0.676	4250 0.628	4750 0.564	5250 0.481	5750 0.434	6250 0.370	6750 1.000	7250 1.000	9000
	SCIAP1 Residual				0.000	0.070	0.057	0.701	0.076	0.020	0.304	0.461	0.434	0.370	1.000	1.000	1.000
RPM	0	1500	2200	2500	2800	3100	3200	3300	3500	3700	4000	4200	4500	5000	5500	6500	8000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	SCIAP2 Residual																
RPM	0	1500	2200	2500	2800	3100	3200	3300	3500	3700	4000	4200	4500	5000	5500	6500	8000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0/ Dt	Boost Residual W				0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75	0.81	0.88	0.94	1.00
% Boost	0.00 1.000	0.06 1.000	0.13 1.000	0.19 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
P0101, P0106, P0121, P012B, P1						1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.0.,.0.00,.0.2.,.0.25,	TPS Residual Wei			arger approauer	•,												
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.833	0.714	0.625	0.556	0.500	0.500	0.500	0.500
RPM	MAF Residual We			4050	4750	2250	2750	2250	2750	4050	4750	5050	5750	COEO	6750	7050	0000
XPIVI	1,000	1.000	750 1.000	1250 0.833	1750 0.833	2250 0.833	2750 0.833	3250 0.833	3750 0.833	4250 0.833	4750 0.833	5250 0.833	5750 0.714	6250 0.714	6750 0.714	7250 0.714	9000
	MAF Residual We				V.033	0.000	V.033	0.033	0.000	0.000	0.033	0.033	J. / 14	0.714	J./ 14	J./ 14	0.714
ım/sec	0.0	40.0	47.0	56.0	67.0	79.0	93.0	111.0	131.0	156.0	184.0	218.0	259.0	307.0	363.0	431.0	510.0
	1.000	1.000	0.909	0.836	0.773	0.719	0.660	0.584	0.501	0.408	0.336	0.294	0.268	0.243	0.219	0.191	0.159
	MAP1 Residual W																
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	0.625 MAP2 Residual W	0.625	0.625	1.000	1.000	1.000	1.000	0.714	0.625	0.556	0.500	0.455	0.417	0.385	0.357	0.333	0.313
RPM	MAP2 Residual W	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
** ***	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.500	0.455	0.455	0.455	0.417	0.417	0.385	0.385	0.385	0.385
	SCIAP1 Residual				•		•							•			
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	0.625	0.625	0.625	0.625	0.625	0.625	0.625	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556
2014	SCIAP2 Residual				4750	0050	0750	0050	0750	4050	1750	5050	5750	2050	0750	7050	000-
RPM	0.556	250 0.556	750 0.556	1250 0.556	1750 0.556	2250 0.556	2750 0.556	3250 0.625	3750 0.625	4250 0.625	4750 0.625	5250 0.625	5750 0.625	6250 0.625	6750 0.625	7250 0.625	9000 0.625
	Boost Residual W				V.330	0.000	0.000	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.025
/ Poort	Poosi vesinnai M	eigni racior i	Jaseu OII /6 OI	DOODL	0.05	0.24	0.30	0.44	0.50	0.56	0.63	0.60	0.75	0.01	0.00	0.04	4.00

Supercharger Intake Flow Rationality Diagnostic Failure Matrix

DTC Set	TPS Model		MAP 1 Model	MAP 2 Model	SCIAP 1 Model	
	Failure	Failure	Failure	Failure	Failure	Failure
No DTC	F	F	F	F	F	F
No DTC	F	F	F	F	F	T
No DTC	F	F	F	F	T	F
P012B	F	F	F	F	T	Т
No DTC	F	F	F	T	F	F
P1101	F	F	F	Ť	F	Ť
P1101	F	F	F	Ť	T	F
P1101	F	F	F	÷	Ť	Ť
No DTC	F	F	Ť	Ė	F	Ė
P1101	F	F	Ť	F	F	T
P1101	F	F	Ť	F	T	F
	F	F	Ť	F	Ť	T
P1101						
P0106	F	F	T	T	F	F
P1101	F	F	T	Т	F	T
P1101	F	F	T	T	T	F
P1101	F	F	T	T	T	T
No DTC	F	T	F	F	F	F
P0101	F	Т	F	F	F	Т
No DTC	F	Т	F	F	Т	F
P0101, P012B	F	Т	F	F	T	T
P1101	F	T	F	T	F	F
P0101	F	Т	F	Т	F	Т
P1101	F	T	F	Ť	Т	F
P0101, P012B	F	Ť	F	Ť	Ť	Ť
P1101	F	Ė	Ť	Ė	F	Ė
P1101	F	i i	Ť	F	F	T
P1101	F	Ť	Ť	F	T	F
P1101	F.	T	T	<u> </u>	T	T
P1101	E	T	T	<u>T</u>	F	F
P1101	F	T	T	T	F	T
P1101	F	T	T	T	T	F
P1101	F	T	T	T	T	T
P0121	T	F	F	F	F	F
No DTC	T	F	F	F	F	T
P0121	T	F	F	F	T	F
P1101	T	F	F	F	T	T
P1101	Т	F	F	Т	F	F
P1101	T	F	F	Ť	F	Т
P1101	Ť	F	F	Ť	T	F
P1101	Ť	F	F	Ť	Ť	T
P0121	Ť	F	T	F	F	F
P1101	Ť	F	Ť	F	F	T
			Ť	F		F
P0121	T	F F		F	T	T
P1101			T			
P1101	T	F	Т	T	F	F
P1101	T	F	T	T	F	T
P1101	T	F	T	T	T	F
P1101	T	F	T	T	T	T
P0121	T	Т	F	F	F	F
P1101	T	T	F	F	F	T
P0121	T	T	F	F	T	F
P1101	T	Т	F	F	T	T
P1101	Ť	Ť	F	Ť	F	F
P1101	Ť	Ť	F	Ť	F	T
P1101	Ť	i i	F	- i	T	F
P1101	Ť	Ť	F	Ť	Ť	T
	+	+	T	F	F	F
P0121						
P1101	T	T	Т	F	F	T
P0121	T	T	T	F	T	F
P1101	T	T	T	F	T	T

P0108, P012D: MAP/SCIAP Cold Run Time Threshold

Temp	-30	-15	0	15	30
	242.0	188.0	134.0	80.0	0.0

P0116: Fail if power up ECT exceeds IAT by these values

Z axis is the Fast Failure temp difference (°C)

X axis is IAT Temperature at Power up (°C)

-40	-28	-16	-4	8	20	32	44	56	68	80	92	104	116	128	140	152
65	55	45	35	25	25	25	25	25	25	15	15	15	15	15	15	15

P0128: Maximum Accumulated Airflow for IAT and Start-up ECT conditions
Z axis is the accumulated airflow failure threshold (grams)
X axis is ECTTemperature at Power up (°C)
Y axis is IAT min during test (°C)

	LOW	п	-40	*20	-10	***	0	20	32	***	30	00	00
Primary	10.0 ° C	54.5 ° C	17626	17626	17626	17626	17626	15882	14137	12392	10648	8903	7159
Alternate	-7.0 ° C	10.0 ° C	16976	16976	16976	15517	14060	12600	11142	9684	8225	8225	8225

P0300-P0308: Idle SCD (decel index (> Idle SCD AND > Idle SCD ddt Tables))

	400	500	600	700	800	900	1000	1100	1200
8	450	450	370	260	170	150	115	100	90
9	450	450	360	250	170	150	115	100	90
11	450	450	360	240	170	150	115	100	90
12	450	450	360	230	150	130	100	95	70
13	450	450	360	220	150	120	100	85	70
14	435	435	360	220	150	110	100	80	65
15	425	425	360	230	150	100	100	80	65
16	425	425	340	230	150	100	90	75	65
17	450	450	360	275	150	130	80	75	60
18	500	500	375	270	180	130	90	70	55
19	500	500	400	280	190	140	90	65	50
21	525	525	425	300	210	150	100	65	50
22	550	550	425	300	220	160	120	75	50
24	675	675	450	375	250	180	140	80	60
25	725	725	475	425	275	200	150	100	55
27	32767	32767	32767	32767	32767	32767	32767	32767	32767
29	32767	32767	32767	32767	32767	32767	32767	32767	32767

P0300-P0308: Idle SCD ddt

.

	400	500	600	700	800	900	1000	1100	1200
8	450	450	360	280	190	170	125	110	100
9	450	450	340	260	190	170	125	110	100
11	450	450	330	240	190	170	125	110	100
12	450	450	330	250	180	140	110	105	80
13	450	450	330	225	160	140	110	95	80
14	400	400	310	225	160	140	110	80	70
15	420	420	340	250	150	120	100	80	70
16	440	440	320	250	150	110	95	80	70
17	460	460	330	275	150	120	90	75	65
18	500	500	360	270	180	120	90	75	65
19	500	500	370	275	170	120	90	70	60
21	550	550	375	280	180	120	100	60	60
22	600	600	400	325	190	130	120	70	50
24	700	700	500	350	225	150	130	80	50
25	800	800	600	400	300	175	140	100	55
27	32767	32767	32767	32767	32767	32767	32767	32767	32767
29	32767	32767	32767	32767	32767	32767	32767	32767	32767

P0300-P0308: SCD Delta

oad

	OR (decel index >SCD DeltaAND > SCD Delta ddt Tables)												
	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000
8	400	400	320	200	145	120	75	65	55	32767	32767	32767	32767
9	400	400	320	200	145	110	75	65	55	32767	32767	32767	32767
11	375	375	260	200	145	110	75	65	55	32767	32767	32767	32767
12	400	400	275	210	150	110	75	65	53	32767	32767	32767	32767
13	425	425	300	220	160	110	80	60	53	32767	32767	32767	32767
15	500	500	350	240	170	120	100	70	55	32767	32767	32767	32767
17	500	500	350	260	180	120	100	80	60	32767	32767	32767	32767
19	550	550	375	275	200	130	110	90	70	32767	32767	32767	32767
22	650	650	500	325	225	140	120	100	75	32767	32767	32767	32767
25	800	800	700	350	300	160	140	120	80	32767	32767	32767	32767
29	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
33	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
38	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
42	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
48	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
54	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
61	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767

P0300-P0308: SCD Delta ddt

oad

			•	•									
	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000
8	400	400	340	220	150	130	75	70	57	32767	32767	32767	32767
9	400	400	340	220	150	120	75	65	57	32767	32767	32767	32767
11	375	375	300	220	150	120	75	65	55	32767	32767	32767	32767
12	400	400	300	230	170	110	85	65	57	32767	32767	32767	32767
13	425	425	340	250	190	130	95	70	60	32767	32767	32767	32767
15	500	500	370	260	200	140	120	80	65	32767	32767	32767	32767
17	550	550	400	280	225	140	110	90	75	32767	32767	32767	32767
19	650	650	450	325	250	150	120	100	80	32767	32767	32767	32767
22	750	750	600	350	300	170	130	120	90	32767	32767	32767	32767
25	900	900	750	400	375	200	160	140	100	32767	32767	32767	32767
29	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
33	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
38	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
42	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
48	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
54	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
61	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767

P0300-P0308: Idle Cyl Mode

OR (decel index (>Idle Cyl ModeAND > Idle Cyl Mode ddt Tables)

Jau	
oad	

	400	500	600	700	800	900	1000	1100	1200
8	1000	1000	800	500	400	300	200	180	120
9	1000	1000	800	500	400	300	200	180	130
11	1000	1000	800	500	400	300	200	180	130
12	1000	1000	800	500	400	275	200	180	130
13	1000	1000	800	500	400	275	200	150	130
14	1000	1000	800	550	400	275	225	150	130
15	1000	1000	800	550	400	275	225	150	130
16	1000	1000	800	550	400	250	200	150	130
17	1200	1200	850	575	400	260	200	150	130
18	1300	1300	850	600	400	300	180	150	130
19	1400	1400	800	600	440	280	180	140	120
21	1500	1500	800	650	460	300	180	140	120
22	1600	1600	800	650	500	310	200	160	120
24	1700	1700	1065	850	600	340	240	170	120
25	1800	1800	1100	900	650	400	270	180	120
27	1900	1900	1150	1000	700	450	300	200	130
29	2000	2000	1200	1100	750	550	400	240	150

P0300-P0308: Idle Cyl Mode ddt

	400	500	600	700	800	900	1000	1100	1200
8	1100	1100	750	500	400	300	200	180	120
9	1100	1100	700	500	400	300	200	180	120
11	1100	1100	700	500	400	300	200	180	120
12	1100	1100	700	500	350	250	200	180	120
13	1100	1100	700	500	350	225	200	150	120
14	1100	1100	700	550	350	225	200	150	120
15	1100	1100	750	550	350	225	200	150	120
16	1100	1100	750	500	350	220	200	150	125
17	1200	1200	800	525	350	220	200	150	130
18	1300	1300	800	575	350	250	170	150	130
19	1400	1400	800	500	380	230	160	130	120
21	1500	1500	800	500	340	250	180	130	110
22	1600	1600	800	625	400	250	190	160	110
24	1700	1700	1000	800	500	300	200	160	110
25	1800	1800	1100	900	600	350	250	180	110
27	1900	1900	1150	1000	700	400	300	200	130
29	2000	2000	1200	1100	750	500	400	220	150

							LUUI	K-UP IA	DLES																		
P0300-P0	808: Cyl Me	ode		OR (decel	index > Cy	Mode AND) > Cyl Mod	e ddt Tables	s))																		
		400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3500	4000	4500	5000	5500	6000	6500	7000
load	8	1000	1000	800	650	350	260	200	150	150	100	55	40	32	25	18	14	12	9	4	4	4	3	2	32767	32767	32767
Load	9 11	1000 900	1000 900	750 650	600 550	350 350	260 260	175 175	150 150	140 140	100 90	55 55	40 40	32 32	25 25	17 17	14 14	11	9	4	4	4	3	3	32767 32767	32767 32767	32767 32767
	12	800	800	650	550	350	240	175	150	130	80	50	40	32	24	18	14	12	9	4	4	4	3	3	32767	32767	32767
	13	900	900	750	550	355	250	180	150	120	80	55	40	30	25	19	15	13	10	5	4	3	3	3	32767	32767	32767
	15	900	900	850	600	425	275	200	150	130	80	60	42	32	28	22	16	13	11	5	4	3	3	2	32767	32767	32767
	17	1000	1000	900 1000	650	450 500	300	250	160 175	135	85	60	50	37 40	30	22	17	14	12	6	4	4	3	2	32767	32767	32767
	19 22	1200	1200	1100	700 800	600	325 350	275 300	200	150 200	120 130	70 80	55 55	40	35 35	24 24	18 21	15 16	12 13	6 7	5	4	3	2	32767 32767	32767 32767	32767 32767
	25	1300	1300	1200	900	700	450	350	250	210	140	90	60	50	40	30	22	17	13	8	5	4	3	2	32767	32767	32767
	29	1400	1400	1300	1000	800	550	425	300	200	150	90	70	50	45	32	23	20	15	9	6	5	3	3	32767	32767	32767
	33	1600	1600	1400	1200	900	650	500	400	225	150	100	80	60	48	34	28	22	16	10	7	5	3	3	32767	32767	32767
	38 42	1800	1800 2000	1600 1800	1400	1000	750	600 700	450 500	275	160	120 130	90 110	65 80	55	36 40	30 35	30	22	11	7 9	6	<u>4</u> 5	3	32767	32767 32767	32767 32767
	48	2000 2000	2000	1800	1600 1600	1200	850 1000	800	550	325 375	200 225	150	125	95	65 70	50	40	35 40	26 28	16	10	8	5	4	32767 32767	32767	32767
	54	2000	2000	1800	1600	1200	1000	800	600	400	250	200	150	120	80	60	50	45	30	18	12	10	6	5	32767	32767	32767
	61	2000	2000	1800	1600	1200	1000	800	700	500	325	250	175	140	100	80	70	55	35	24	16	12	8	7	32767	32767	32767
P0300-P0	308: Cyl M																										
		400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3500	4000	4500	5000	5500	6000	6500	7000
load	9	1000 1000	1000	800 750	650 600	350 350	280 280	200 175	150 150	150 140	100 100	50 50	40 40	35 30	25 25	18 17	12 12	12 10	9	0	0	0	0	0	0	0	0
	11	900	900	650	550	350	280	175	150	140	90	50	40	30	24	16	12	10	9	0	0	0	0	0	0	0	0
	12	900	900	700	550	375	250	175	150	130	80	55	40	30	24	17	12	10	9	0	0	0	0	0	0	0	0
	13	1000	1000	800	600	400	300	200	170	120	80	55	40	30	25	19	13	13	10	0	0	0	0	0	0	0	0
	15	1000	1000	900	650	500	325	225	180	130	90	60	42	34	28	22	15	12	11	0	0	0	0	0	0	0	0
	17 19	1100 1200	1100 1200	1000	700 800	500 600	350 375	275 325	200 225	150 160	100 140	70 70	45 55	40	30 35	24 26	16 20	13 15	12 12	0	0	0	0	0	0	0	0
	22	1300	1300	1200	900	700	450	350	250	200	150	80	60	45	38	28	22	18	17	0	0	0	0	0	0	0	0
	25	1400	1400	1300	1000	800	523	450	300	200	150	90	70	50	40	32	22	19	17	0	0	0	0	0	0	0	0
	29	1500	1500	1400	1100	900	650	500	375	225	160	100	80	55	48	36	25	24	18	0	0	0	0	0	0	0	0
	33	1600	1600	1500	1200	1000	750	500	425	250	180	120	90	65	50	38	32	26	22	0	0	0	0	0	0	0	0
	38 42	1800 2000	1800 2000	1600 1800	1400 1600	1100 1200	850 1000	600 700	450 500	350 400	200 250	140 150	100 120	70 90	60 70	42 50	40 45	35 40	26 30	0	0	0	0	0	0	0	0
	48	2000	2000	1800	1600	1200	1000	800	550	450	275	200	150	110	80	60	50	45	32	0	0	0	0	0	0	0	0
	54	2000	2000	1800	1600	1200	1000	800	600	450	300	225	175	140	90	70	60	55	36	0	0	0	0	0	0	0	0
	61	2000	2000	1800	1600	1200	1000	800	700	525	425	275	200	160	120	100	80	65	45	0	0	0	0	0	0	0	0
P0300-P0	308: Rev M	Mode Table		OR (dece	l index > Re	ev Mode Ta	ble)																				
P0300-P0	808: Rev M	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3500	4000	4500	5000	5500	6000	6500	7000
P0300-P0	8	400 32767	32767	600 32767	700 32767	800 32767	900 32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	75	55	40	30	26	16	32767	32767	32767
	8 9	400 32767 32767	32767 32767	32767 32767	700 32767 32767	800 32767 32767	900 32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80	55 55	40 40	30 32	26 26	16 18	32767 32767	32767 32767	32767 32767
	8 9 11	400 32767 32767 32767	32767 32767 32767	32767 32767 32767	700 32767 32767 32767	32767 32767 32767	900 32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	32767 32767 32767	75 80 85	55 55 60	40 40 40	30 32 32	26 26 26	16 18 22	32767 32767 32767	32767 32767 32767	32767 32767 32767
	8 9 11 12	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	75 80 85 85 90	55 55 60 60 70	40 40 40 45 50	30 32 32 32 40	26 26 26 26 26 28	16 18 22 22 22 24	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767	32767 32767 32767 32767 32767
	8 9 11 12 13 15	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	75 80 85 85 90 100	55 55 60 60 70 80	40 40 40 45 50 55	30 32 32 32 32 40 45	26 26 26 26 28 32	16 18 22 22 24 26	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15	400 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100	55 55 60 60 70 80 90	40 40 40 45 50 55 65	30 32 32 32 32 40 45 50	26 26 26 26 28 32 40	16 18 22 22 22 24 26 32	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17	400 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120	55 55 60 60 70 80 90	40 40 40 45 50 55 65 80	30 32 32 32 40 45 50	26 26 26 26 28 32 40 45	16 18 22 22 24 26 32 35	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17 19 22	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100	55 55 60 60 70 80 90 100	40 40 40 45 50 55 65 80 90	30 32 32 32 32 40 45 50	26 26 26 26 28 32 40 45 50	16 18 22 22 24 26 32 35 40	32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17	400 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140	55 55 60 60 70 80 90	40 40 40 45 50 55 65 80	30 32 32 32 40 45 50 55 65	26 26 26 26 28 32 40 45	16 18 22 22 24 26 32 35	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17 19 22 25 29 33	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220	55 55 60 60 70 80 90 100 120 140 150 180	40 40 40 45 50 55 65 80 90 100 110	30 32 32 32 40 45 50 55 65 75 85	26 26 26 26 28 32 40 45 50 60 70 80	16 18 22 22 24 26 32 35 40 50 55 60	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17 19 22 25 29 33 38	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280	55 55 60 60 70 80 90 100 120 140 140 180 220	40 40 40 45 50 55 65 80 90 100 110 130	30 32 32 32 40 45 50 55 65 75 85 110	26 26 26 26 28 32 40 45 50 60 70 80	16 18 22 22 24 26 32 35 40 50 55 60 70	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 111 12 13 15 15 17 19 22 25 29 33 38 42	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 85 100 120 140 160 170 180 220 280 320	55 55 60 60 70 80 90 100 120 140 150 180 220 260	40 40 40 45 50 55 65 80 90 100 110 130 140	30 32 32 32 40 45 50 55 65 75 85 110 125	26 26 26 26 28 32 40 45 50 60 70 80 90	16 18 22 22 24 26 32 35 40 50 55 60 70 80	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 11 12 13 15 17 19 22 25 29 33 38	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280	55 55 60 60 70 80 90 100 120 140 140 180 220	40 40 40 45 50 55 65 80 90 100 110 130	30 32 32 32 40 45 50 55 65 75 85 110	26 26 26 26 28 32 40 45 50 60 70 80	16 18 22 22 24 26 32 35 40 50 55 60 70	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 111 12 13 15 17 19 22 25 29 33 38 42 48	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 90 100 120 140 140 170 180 220 280 320 350	55 55 60 70 80 90 100 120 140 150 180 220 260 290	40 40 40 45 50 55 65 80 90 100 110 130 140 150 180	30 32 32 32 40 45 50 55 65 75 85 110 125 140	26 26 26 28 32 40 45 50 60 70 80 90 100	16 18 22 22 24 26 32 35 40 50 55 60 70 80	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
	8 9 1 11 12 13 15 17 19 22 25 29 33 38 42 48 54	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280 350 370	55 55 60 60 70 80 90 100 120 140 150 180 220 290 320	40 40 40 45 50 55 65 80 90 100 110 130 140 150 180	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160	26 26 26 26 28 32 40 45 50 70 80 90 120 135	16 18 22 22 24 26 32 35 50 50 55 60 70 80 100	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load	8 9 111 12 13 15 17 19 22 25 29 33 38 42 48 61	400 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280 350 370	55 55 60 60 70 80 90 100 120 140 150 180 220 290 320	40 40 40 45 50 55 65 80 90 100 110 130 140 150 180	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160	26 26 26 26 28 32 40 45 50 70 80 90 120 135	16 18 22 22 24 26 32 35 50 50 55 60 70 80 100	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load	8 9 111 12 13 15 17 19 22 25 29 33 38 42 48 61	400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	600 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280 350 370	55 55 60 60 70 80 90 100 120 140 150 180 220 290 320	40 40 40 45 50 55 65 80 90 100 110 130 140 150 180	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160	26 26 26 26 28 32 40 45 50 70 80 90 120 135	16 18 22 22 24 26 32 35 50 50 55 60 70 80 100	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load P0300-P0: load	8 9 111 12 13 15 17 19 22 25 29 33 38 42 48 61	400 32767	32767 32767	600 32767	700 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	800 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	900 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	75 80 85 85 90 100 120 140 160 170 180 220 280 320 350 370 400	55 55 60 60 70 80 90 120 140 150 180 220 260 290 320 350 3500	40 40 40 45 50 55 65 80 90 100 110 130 140 150 220 4000 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 180 200	26 26 26 26 28 32 40 45 50 60 70 80 90 100 120 135 150	16 18 22 22 24 26 32 35 40 50 70 80 120 140	32767 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load	8 9 111 122 133 155 177 19 22 25 29 33 38 42 48 54 61 61 608: AFM N	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 120 140 160 170 280 320 350 370 400	55 55 60 60 70 80 90 120 140 150 180 220 280 290 320 350 350 32767	40 40 40 45 50 55 65 80 100 110 130 140 200 220 400 400 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 180 200	26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150	16 18 22 22 24 26 32 35 40 50 70 80 100 120 140 5500 5500 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load P0300-P0: load	8 9 11 1 12 13 15 15 17 19 22 25 29 33 8 42 42 48 61 61 608: AFM N	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 220 280 320 350 370 400 32767 32767	55 55 60 60 70 80 100 120 140 150 220 260 290 320 350 350 32767 32767 32767	40 40 40 45 50 55 65 80 90 110 130 140 150 220 4000 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 120 140 180 200	26 26 26 26 28 32 40 45 50 60 70 100 120 135 150 5000 32767 32767	16 18 22 22 24 26 32 35 40 50 50 70 80 100 120 140 5500 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 111 122 133 155 177 19 22 25 29 33 38 42 48 54 61 61 608: AFM N	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 280 350 370 400 32767 32767 32767	55 55 60 60 70 80 90 120 140 150 220 260 290 320 350 350 32767 32767 32767	40 40 40 45 50 55 65 80 100 110 130 140 200 220 400 400 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 180 200	26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150	16 18 22 22 24 26 32 35 40 50 60 70 80 100 120 140 5500 32767 32767 32767	32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767
load P0300-P0: load	8 9 111 122 133 155 177 199 22 25 29 38 42 48 54 61 808: AFM N 9 111 12	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 220 280 320 350 370 400 32767 32767	55 55 60 60 70 80 100 120 140 150 220 260 290 320 350 350 32767 32767 32767	40 40 40 45 55 65 80 90 100 110 130 140 150 220 220 4000 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 120 140 180 200	26 26 26 26 28 32 40 45 50 60 70 100 120 135 150 5000 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 50 70 80 100 120 140 5500 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 122 13 33 38 42 48 54 61 808: AFM N 8 9 111 12 13 15 17 17 19 19 11 11 12 13 15 17 17	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 320 350 370 400 32767 32767 32767 32767 32767	\$55 \$55 \$60 \$60 \$70 \$80 \$90 \$120 \$140 \$150 \$180 \$220 \$290 \$320 \$350 \$350 \$3767 \$32767 \$32767 \$32767 \$32767 \$32767	40 40 40 45 55 65 80 90 110 130 140 200 220 400 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 28 32 40 45 50 60 70 80 100 120 135 150 5000 32767 32767 32767 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 55 60 70 80 120 140 5500 120 140 5500 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 12 13 15 15 17 19 19 19 19 19 19 19 19 19 19 19 19 19	400 32767	32767 32767	600 32767	32767 32767	32767 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 280 350 370 400 32767 32767 32767 32767 32767 32767 32767	55 55 60 60 70 80 90 100 120 140 150 180 220 320 320 350 32767 32767 32767 32767 32767 32767 32767 32767	40 40 40 40 45 55 65 80 90 100 110 130 140 200 220 400 32767 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 180 200 4500 32767 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150 5000 32767 32767 32767 32767 32767 32767 32767	16 18 18 22 22 24 26 32 35 40 50 70 100 120 140 5500 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 111 122 133 155 177 199 222 188 42 188 54 61 122 13 15 17 17 19 19 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 19 19 17 17 17 19 19 17 17 17 19 19 17 17 17 19 17 17 17 19 19 17 17 17 17 17 17 17 17 17 17 17 17 17	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 320 330 370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	55 55 60 60 70 80 90 120 140 150 180 220 260 290 320 350 350 32767 32767 32767 32767 32767 32767 32767	40 40 40 45 55 65 80 90 110 130 130 200 220 4000 220 4000 32767 32767 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 110 125 140 180 200 4500 32767 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 28 32 40 45 50 60 70 80 100 120 135 150 500 32767 32767 32767 32767 32767 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 55 60 70 100 120 140 5500 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 122 13 155 17 19 19 22 25 19 11 11 12 13 15 15 17 19 19 22 25 19 19 11 11 12 13 15 15 17 19 22 25 19 19 19 22 25 19 19 19 22 25 19 19 19 22 25 19 19 19 19 22 25 19 19 19 19 19 19 19 19 19 19 19 19 19	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 280 350 370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767	55 55 60 60 70 80 90 120 120 120 120 220 220 220 320 327 32767 32767 32767 32767 32767 32767 32767 32767 32767	40 40 40 40 45 50 65 80 90 110 130 140 200 220 4000 32767 32767 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 180 200 32767 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150 5000 32767 32767 32767 32767 32767 32767 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 50 60 100 120 140 15500 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 8 9 111 12 22 13 15 17 19 122 22 25 29 29	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 89 100 120 140 160 170 180 220 280 320 370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767	55 55 60 60 70 80 90 100 120 140 150 180 220 260 320 350 32767 32767 32767 32767 32767 32767 32767 32767 32767	40 40 40 40 45 55 65 80 90 100 110 130 140 150 200 220 400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 55 65 75 85 110 125 140 180 200 4500 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 26 28 32 40 45 50 60 80 90 100 120 135 150 50 60 32767 32767 32767 32767 32767 32767 32767 32767 32767	16 18 18 22 22 24 26 26 35 40 50 70 80 120 120 140 5500 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 122 13 155 17 19 19 22 15 15 17 19 19 22 25 19 11 11 12 13 15 15 17 19 22 25 19 19 19 19 19 19 19 19 19 19 19 19 19	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 280 350 370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767	55 55 60 60 70 80 90 120 120 120 120 220 220 220 320 327 32767 32767 32767 32767 32767 32767 32767 32767 32767	40 40 40 40 45 50 65 80 90 110 130 140 200 220 4000 32767 32767 32767 32767 32767 32767 32767 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 180 200 32767 32767 32767 32767 32767 32767 32767 32767	26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150 5000 32767 32767 32767 32767 32767 32767 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 50 60 100 120 140 15500 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 12 13 15 17 19 22 25 5 29 33 38 42	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 320 350 370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767	\$55 \$55 \$60 \$60 \$70 \$80 \$90 \$100 \$120 \$140 \$150 \$180 \$220 \$260 \$290 \$320 \$350 \$350 \$350 \$32767 \$32	400 40 40 45 50 55 65 80 90 110 130 140 200 220 220 220 220 220 220 220 220 220 220	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 180 200 4500 32767 3276	26 26 26 26 26 28 32 40 45 50 60 70 80 100 120 135 150 5000 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	16 18 22 22 24 26 32 35 40 50 55 60 70 80 120 140 5500 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 122 13 155 177 199 22 255 299 33 38 42 48 54 11 12 13 15 17 19 22 25 29 33 38 42 48 48 54 48 54 54 54 54 55 56 56 56 56 56 56 56 56 56 56 56 56	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 220 320 350 370 400 32767	\$55 \$55 \$60 60 60 70 80 90 100 120 130 220 320 320 350 32767	40 40 40 40 45 55 65 80 90 100 110 130 140 200 220 220 400 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 180 200 200 32767 327	26 26 26 26 26 28 32 40 45 50 60 70 80 90 120 135 150 5000 32767	16 18 22 22 24 26 35 40 50 70 100 120 140 140 5500 32767	32767 32767	32767 32767	32767 32767
load P0300-P0: load	8 9 9 111 12 13 15 17 19 22 25 5 29 33 38 42	400 32767	32767 32767	600 32767	700 32767	800 32767	900 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	32767 32767	75 80 85 85 85 90 100 120 140 160 170 180 320 320 3370 400 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767 32767	\$55 \$55 \$60 \$60 \$70 \$80 \$90 \$100 \$120 \$140 \$150 \$180 \$220 \$260 \$290 \$320 \$350 \$350 \$350 \$32767 \$32	40 40 40 40 45 55 65 80 90 110 130 130 140 150 180 200 220 4006 32767	30 32 32 32 40 45 50 55 65 75 85 110 125 140 160 180 200 4500 32767 3276	26 26 26 26 28 32 40 45 50 60 70 100 120 135 150 5000 32767	16 18 22 22 24 26 32 35 40 50 55 60 70 80 120 140 5500 32767	32767 32767	32767 32767	32767 32767

Note: Zero torque is adjusted for Baro since load for mistire thresholds is relative to (maximum air density PID \$1188 SAE xxx), not (current density as defined PID \$04 SAE1979)

LOOK-UP TABLES

P0300-P0308: Zero torque engine load

RPM	Pct load
400	11.00
500	10.00
600	9.50
700	9.10
800	9.10
900	9.05
1000	9.00
1100	8.90
1200	8.90
1400	9.00
1600	9.10
1800	9.20
2000	9.30
2200	9.40
2400	9.45
2600	9.50
2800	9.60
3000	9.70
3500	12.54
4000	14.87
4500	17.21
5000	19.55
5500	21.88
6000	24.22
6500	26.56
7000	28.89

KcMISF_OneCylNoCatDamLvl

Catalyst Damaging Misfire Percentage

	0	1000	2000	3000	4000	5000	6000	7000
0	11	11	11	7	6	5	5	5
10	11	11	8	6	6	5	5	5
20	11	11	8	6	5	5	5	5
30	11	11	8	6	5	5	5	5
40	11	11	8	5	5	5	5	5
50	10	8	6	5	5	5	5	5
60	8	8	5	5	5	5	5	5
70	7	6	5	5	5	5	5	5
80	6	6	5	5	5	5	5	5
90	6	5	5	5	5	5	5	5
100	5	5	5	5	5	5	5	5

P0133 - O2S Slow Response Bank 1 Sensor 1" Pass/Fail Threshold table

Z axis is the pass/fail result (see note below) X axis is Lean to Rich response time (msec)

Y axis is Rich to Lean response time (msec)

		vote: ii trie ce	iii contains a 0	then the lault is	iot indicated, ii it c	ontains a T a ia	uit is indicated			Need to change	,						
	0.000	0.018	0.036	0.054	0.078	0.096	0.114	0.126	0.144	0.162	0.180	0.195	0.210	0.215	0.250	0.275	2.000
0.000	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.018	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.036	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0.054	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
0.072	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
0.090	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.108	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.126	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.144	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.162	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.168	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.172	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.179	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P0153 - O2S Slow Response Bank 2 Sensor 1" Pass/Fail Threshold table

Z axis is the pass/fail result (see note below) X axis is Lean to Rich response time (msec)

Note: If the cell contains a "0" then the fault is not indicated, if it contains a "1" a fault is indicated

09 OBDG07 Engine Diagnostics

MAIN SECTION 1 of 2 Sections

							LOOK-UP	TABLES									
	0.000	0.018	0.036	0.054	0.078	0.096	0.114	0.126	0.144	0.162	0.180	0.195	0.210	0.215	0.250	0.275	2.000
0.000	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.018	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.036	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0.054	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
0.072	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
0.090	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.108	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.126	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.144	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.162	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.168	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.172	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.179	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0.200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P1133 - O2S HC L to R Switches Limit Bank 1 Sensor 1" Pass/Fail Threshold table

Z axis is Limit for L/R HC switches

Y axis is Average flow during the response test (gps)
X axis is estimated Ethanol percentage
Note: The cell contains the minumum switches

	(0.0 10.0	20.0	50.0	80.0
0.0	41	41	41	41	41
6.3	41	41	41	41	41
12.5	42	42	42	42	42
18.8	42	42	42	42	42
25.0	42	42	42	42	42
31.3	42	42	42	42	42
37.5	43	43	43	43	43
43.8	43	43	43	43	43
50.0	43	43	43	43	43
56.3	43	43	43	43	43
62.5	44	44	44	44	44
68.8	44	44	44	44	44
75.0	44	44	44	44	44
81.3	44	44	44	44	44
87.5	45	45	45	45	45
93.8	45	45	45	45	45
100.0	45	45	45	45	45

P1133 - O2S HC R to L Switches Limit Bank 1 Sensor 1" Pass/Fail Threshold table
Z axis is Limit for R/L HC switches

Z axis is Limit for NZ FIC switches
Y axis is Average flow during the response test (gps)
X axis is estimated Ethanol percentage
Note: The cell contains the minumum switches

44 44 44

P1153 - O2S HC L to R Switches Limit Bank 2 Sensor 1" Pass/Fail Threshold table

Z axis is Limit for L/R HC switches Y axis is Average flow during the response test (gps) X axis is estimated Ethanol percentage Note: The cell contains the minumum switches

		0.0 10.0	0 20.0) 5	0.0 80.0
0.0	41	41	41	41	41
6.3	41	41	41	41	41
12.5	42	42	42	42	42
18.8	42	42	42	42	42
25.0	42	42	42	42	42
31.3	42	42	42	42	42
37.5	43	43	43	43	43
43.8	43	43	43	43	43
50.0	43	43	43	43	43
56.3	43	43	43	43	43
62.5	44	44	44	44	44
68.8	44	44	44	44	44
75.0	44	44	44	44	44
81.3	44	44	44	44	44
87.5	45	45	45	45	45
93.8	45	45	45	45	45
100.0	45	45	45	45	45

P1153 - O2S HC R to L Switches Limit Bank 2 Sensor 1" Pass/Fail Threshold table

Z axis is Limit for R/L HC switches Y axis is Average flow during the response test (gps) X axis is estimated Ethanol percentage Note: The cell contains the minumum switches

	C	0.0 10.0	20.0	50.0	80.0
0.0	41	41	41	41	41
6.3	41	41	41	41	41
12.5	42	42	42	42	42
18.8	42	42	42	42	42
25.0	42	42	42	42	42
31.3		42	42	42	42
37.5	43	43	43	43	43
43.8	43	43	43	43	43
50.0	43	43	43	43	43
56.3	43	43	43	43	43
62.5	44	44	44	44	44
68.8	44	44	44	44	44
75.0	44	44	44	44	44
81.3	44	44	44	44	44
87.5	45	45	45	45	45
93.8	45	45	45	45	45
100.0	45	45	45	45	45

P2270/P2272 - O2 Sensor Signal Stuck Lean Bank 1/2 Sensor (Rich Equiv Ratio

	0.0	500.0	1000.0	1500.0	2000.0
0.0	1.120117	1.120117	1.120117	1.120117	1.120117
25.0	1.120117	1.120117	1.120117	1.120117	1.120117
50.0	1.129883	1.129883	1.129883	1.129883	1.129883
75.0	1.140137	1.140137	1.140137	1.140137	1.140137
100.0	1.149902	1.149902	1.149902	1.149902	1.149902

Z axis is Equiv ratio during the test Y axis is MAP (kpa) X axis RPM

P2271/P2273 - O2 Sensor Signal Stuck Rich Bank 1/2 Sensor Lean Equiv Ratio

	0.0	500.0	1000.0	1500.0	2000.0
0.0	0.899902	0.899902	0.899902	0.899902	0.899902
25.0	0.899902	0.899902	0.899902	0.899902	0.899902
50.0	0.899902	0.899902	0.899902	0.899902	0.899902
75.0	0.899902	0.899902	0.899902	0.899902	0.899902
100.0	0.899902	0.899902	0.899902	0.899902	0.899902

Z axis is Equiv ratio during the test Y axis is MAP (kpa) X axis RPM

P2A01 - O2 Sensor Signal Stuck Lean Bank 1 Sensor (Rich Equiv Ratio

	0.0	500.0	1000.0	1500.0	2000.0
0.0	0.919922	0.919922	0.919922	0.919922	0.919922
25.0	0.919922	0.919922	0.919922	0.919922	0.919922
50.0	0.919922	0.919922	0.919922	0.919922	0.919922
75.0	0.919922	0.919922	0.919922	0.919922	0.919922
100.0	0.919922	0.919922	0.919922	0.919922	0.919922

Z axis is Equiv ratio during the test Y axis is MAP (kpa) X axis RPM

P2A01- O2 Sensor Signal Stuck Rich Bank 1 Sensor Lean Equiv Ratio

	0.0	500.0	1000.0	1500.0	2000.0
0.0	1.080078	1.080078	1.080078	1.080078	1.080078
25.0	1.080078	1.080078	1.080078	1.080078	1.080078
50.0	1.100098	1.100098	1.100098	1.100098	1.100098
75.0	1.120117	1.120117	1.120117	1.120117	1.120117
100.0	1.149902	1.149902	1.149902	1.149902	1.149902

Z axis is Equiv ratio during the test Y axis is MAP (kpa)

X axis RPM

FastFailTempDiff

Tables supporting Engine Oil Temperature Sensor

P0196

AXIS	-40	-28	-16	-4	1	В 20	32	44	56	9 68	80	92	104	116	128	140	152
Curve	79.5	79.5	79.5	60.0	60.0	39.8	39.8	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	TotalAccumula	tedFlow			Axis is Power to	up Engine Oil tem	perature, Curve i	s accumulated e	engine grams air	flow							
Axis	-40	-28	-16	-4		B 20	32	44	56	68	80	92	104	116	128	140	152
Curve	15000	14000	13000	12000	11000	10000	9000	8000	7000	6000	5000	4000	5000	4000	3000	3000	3000
For P3400: P0101, P0106, P0121,	, P012B, P1101: II	FRD Residua	l Weighting Fa	ctors													
	TPS Residual V	Veight Factor	based on RPN														
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000
	0.000	0.000	0.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000
	MAF Residual V	Veight Facto	r based on RPI	M													

AXIS is Engine Coolant Temperature at ECM Power-up, Degrees C

gm/sec	0.0	50.0	70.0	73.0	76.0	79.0	82.0	85.0	89.0	95.0	100.0	110.0	120.0	150.0	200.0	280.0	350.0	
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	MAP1 Residua	I Weight Facto	or based on RP	M														
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000	
	0.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	
	MAP2 Residua	I Weight Facto	or based on RP	M														
RPM	0	250	750	1250	1750	2250	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	9000	
	0.000	0.000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1.000	1.000	1 000	1 000	0.000	0.000	0.000	0.000	

P3	400	

	EngSpeedLw					State, Curve is N			
xis	1st Gear	2nd Gear	3rd Gear	4th Gear	5thGear	6th Gear	Neutral	Reverse	Park
urve	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0
	EngSpeedUp	LimitEnable1	able		AXIS is Gear S	State, Curve is N	m Torque		
	1st Gear	2nd Gear	3rd Gear	4th Gear	5thGear	6th Gear	Neutral	Reverse	Park
is	1St Gear	ziiu Geai	ord Gear		Julideal	otti Geai	Neutrai	Reverse	Park
rve	2800.0 EngSpeedLw	2800.0	2800.0 Table	2800.0	2800.0 AXIS is Gear S	2800.0 State, Curve is N	2800.0	2800.0	2800.0
rve	2800.0 EngSpeedLw	2800.0	2800.0 Table	2800.0	2800.0 AXIS is Gear S	2800.0 State, Curve is N	2800.0 m Torque	2800.0	2800.0
is	2800.0	2800.0	2800.0		2800.0	2800.0	2800.0		
rve	2800.0 EngSpeedLwi 1st Gear 625	2800.0 rLimitDisable 2nd Gear 625	2800.0 Table 3rd Gear 625	2800.0 4th Gear	2800.0 AXIS is Gear 5 5thGear 625	2800.0 State, Curve is N 6th Gear 625	2800.0 m Torque Neutral 625	2800.0	2800.0 Park
cis urve cis urve	2800.0 EngSpeedLwr 1st Gear 625 EngSpeedUpr	2800.0 rLimitDisable 2nd Gear 625 rLimitDisable	Table 3rd Gear 625 Table	2800.0 4th Gear 625	AXIS is Gear \$ 5thGear 625 AXIS is Gear \$	2800.0 State, Curve is N 6th Gear 625 State, Curve is N	m Torque Neutral 625 m Torque	2800.0 Reverse 625	2800.0 Park 625
urve	2800.0 EngSpeedLwi 1st Gear 625	2800.0 rLimitDisable 2nd Gear 625	2800.0 Table 3rd Gear 625	2800.0 4th Gear	2800.0 AXIS is Gear 5 5thGear 625	2800.0 State, Curve is N 6th Gear 625	2800.0 m Torque Neutral 625	2800.0	2800.0 Park

 AXIS is Gear State, Curve is Nm Torque

 5thGear
 6th Gear
 Neutral

 2800
 2800
 2800

HalfCylToAllCy	/ivacuum			Horizontai AXIS	is Gear State, Ve	erticai axis is Eng	JINE KPM		
RPM	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear	6th Gear	Neutral	Park	Reverse
0.0	11	11	11	11	11	11	11	11	11
100.0	11	11	11	11	11	11	11	11	11
200.0	11	11	11	11	11	11	11	11	11
300.0	11	11	11	11	11	11	11	11	11
400.0	11	11	11	11	11	11	11	11	11
500.0	11	11	11	11	11	11	11	11	11
600.0	11	11	11	11	11	11	11	11	11
700.0	28	28	28	28	28	28	28	28	28
800.0	28	28	28	28	28	28	28	28	28
900.0	28	28	28	28	28	28	28	28	28
1000.0	28	28	28	28	28	28	28	28	28
1100.0	28	28	28	28	28	28	28	28	28
1200.0	28	28	28	28	28	28	28	28	28
1300.0	16	16	16	16	16	16	16	16	16
1400.0	5	5	5	5	5	5	5	5	5
1500.0	5	5	5	5	5	5	5	5	5
1600.0	5	5	5	5	5	5	5	5	5
1700.0	5	5	5	5	5	5	5	5	5
1800.0	5	5	5	5	5	5	5	5	5
1900.0	5	5	5	5	5	5	5	5	5
2000.0	5	5	5	5	5	5	5	5	5
2100.0	5	5	5	5	5	5	5	5	5
2200.0	5	5	5	5	5	5	5	5	5
2300.0	5	5	5	5	5	5	5	5	5
2400.0	5	5	5	5	5	5	5	5	5
2500.0	5	5	5	5	5	5	5	5	5
2600.0	5	5	5	5	5	5	5	5	5
2700.0	5	5	5	5	5	5	5	5	5
2800.0	5	5	5	5	5	5	5	5	5
2900.0	5	5	5	5	5	5	5	5	5
3000.0	5	5	5	5	5	5	5	5	5
3100.0	5	5	5	5	5	5	5	5	5
3200.0	5	5	5	5	5	5	5	5	5
	•			•	•				

RPM	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear	6th Gear	Neutral	Park	Reverse
0.0	4	4	4	4	4	4	4	4	4
100.0	4	4	4	4	4	4	4	4	4
200.0	4	4	4	4	4	4	4	4	4
300.0	4	4	4	4	4	4	4	4	4
400.0	4	4	4	4	4	4	4	4	4
500.0	4	4	4	4	4	4	4	4	4
600.0	4	4	4	4	4	4	4	4	4
700.0	4	4	4	4	4	4	4	4	4
800.0	4	4	4	4	4	4	4	4	4
900.0	4	4	4	4	4	4	4	4	4
1000.0	4	4	4	4	4	4	4	4	4
1100.0	4	4	4	4	4	4	4	4	4
1200.0	4	4	4	4	4	4	4	4	4
1300.0	4	4	4	4	4	4	4	4	4
1400.0	4	4	4	4	4	4	4	4	4
1500.0	4	4	4	4	4	4	4	4	4
1600.0	3	3	3	3	3	3	3	3	3
1700.0	3	3	3	3	3	3	3	3	3
1800.0	3	3	3	3	3	3	3	3	3
1900.0	3	3	3	3	3	3	3	3	3
2000.0	3	3	3	3	3	3	3	3	3
2100.0	3	3	3	3	3	3	3	3	3
2200.0	3	3	3	3	3	3	3	3	3

						LOOK-U	P TABLES		
2300.0	3	3	3	3	3	3	3	3	3
2400.0	3	3	3	3	3	3	3	3	3
2500.0	3	3	3	3	3	3	3	3	3
2600.0	3	3	3	3	3	3	3	3	3
2700.0	3	3	3	3	3	3	3	3	3
2800.0	3	3	3	3	3	3	3	3	3
2900.0	3	3	3	3	3	3	3	3	3
3000.0	3	3	3	3	3	3	3	3	3
3100.0	3	3	3	3	3	3	3	3	3
3200.0	3	3	3	3	3	3	3	3	3

PRNDL Drive 1	1
PRNDL Drive 2	1
PRNDL Drive 3	1
PRNDL Drive 4	0
PRNDL Drive 5	1
PRNDL Drive 6	1
PRNDL Neutral	1
PRNDL Reverse	1
PRNDL Park	1
PRNDL Transitional 1	1
PRNDL Transitional 2	1
PRNDL Transitional 4	1
PRNDL Transitional 7	1
PRNDL Transitional 8	1
PRNDL Transitional 11	1
PRNDL Transitional 13	1
PRNDL Transitional Illegal	1
PRNDL Transitional Between State	1

PRNDL Drive 1	1
PRNDL Drive 2	1
PRNDL Drive 3	1
PRNDL Drive 4	0
PRNDL Drive 5	1
PRNDL Drive 6	1
PRNDL Neutral	0
PRNDL Reverse	1
PRNDL Park	0
PRNDL Transitional 1	1
PRNDL Transitional 2	1
PRNDL Transitional 4	1
PRNDL Transitional 7	1
PRNDL Transitional 8	1
PRNDL Transitional 11	1
PRNDL Transitional 13	1
PRNDL Transitional Illegal	1
PRNDL Transitional Between State	1

 HalfCylDisabledTransGr Table
 AXIS is Gear State

 1st Gear
 2nd Gear
 3rd Gear
 4th Gear
 5thGear
 6th Gear
 Neutral
 Reverse
 Park

 1
 1
 0
 0
 1
 1
 0
 1
 0

 All CyliDisabled TransGr Table
 AXIS is Gear State

 1st Gear
 2nd Gear
 3rd Gear
 4th Gear
 5thGear
 6th Gear
 Neutral
 Reverse
 Park

 1
 1
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1<

RPM	1st Gear	2nd Gear	3rd Gear	Horizontal AXIS 4th Gear	5th Gear	6th Gear	Neutral	Park	Reverse
0.0	54	54	54	54	54	54	54	54	54
100.0	54	54	54	54	54	54	54	54	54
200.0	54	54	54	54	54 54	54	54 54	54	54
300.0	54	54	53	53	54 53	54	54 53	53	54
400.0	53	53	53	53	53	53	53	53	53
500.0	52	52	52	52	52	52	52	52	52
600.0	51	51	51	51	51	51	51	51	51
700.0	51	51	51	51	51	51	51	51	51
800.0	56	56	56	56	56	56	56	56	56
900.0	55	55	55	55	55	55	55	55	55
1000.0	55	55	55	55	55	55	55	55	55
1100.0	55	55	55	55	55	55	55	55	55
1200.0	55	55	55	55	55	55	55	55	55
1300.0	51	51	51	51	51	51	51	51	51
1400.0	48	48	48	48	48	48	48	48	48
1500.0	47	47	47	47	47	47	47	47	47
1600.0	47	47	47	47	47	47	47	47	47
1700.0	46	46	46	46	46	46	46	46	46
1800.0	46	46	46	46	46	46	46	46	46
1900.0	45	45	45	45	45	45	45	45	45
2000.0	44	44	44	44	44	44	44	44	44
2100.0	44	44	44	44	44	44	44	44	44
2200.0	43	43	43	43	43	43	43	43	43
2300.0	43	43	43	43	43	43	43	43	43
2400.0	43	43	43	43	43	43	43	43	43
2500.0	43	43	43	43	43	43	43	43	43
2600.0	43	43	43	43	43	43	43	43	43
2700.0	43	43	43	43	43	43	43	43	43
2800.0	43	43	43	43	43	43	43	43	43
2900.0	43	43	43	43	43	43	43	43	43
3000.0	43	43	43	43	43	43	43	43	43
3100.0	43	43	43	43	43	43	43	43	43
3200.0	43	43	43	43	43	43	43	43	43

EcoAllCylToHa	IfCylVacuum			Horizontal AXIS	is Gear State, Vo	ertical axis is Eng	gine RPM		
RPM	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear	6th Gear	Neutral	Park	Reverse
0.0	54	54	54	54	54	54	54	54	54
100.0	54	54	54	54	54	54	54	54	54
200.0	53	53	53	53	53	53	53	53	53
300.0	53	53	53	53	53	53	53	53	53
400.0	50	50	50	50	50	50	50	50	50
500.0	50	50	50	50	50	50	50	50	50
600.0	49	49	49	49	49	49	49	49	49
700.0	49	49	49	49	49	49	49	49	49
800.0	48	48	48	48	48	48	48	48	48
900.0	48	48	48	48	48	48	48	48	48
1000.0	48	48	48	48	48	48	48	48	48
1100.0	47	47	47	47	47	47	47	47	47
1200.0	47	47	47	47	47	47	47	47	47
1300.0	47	47	47	47	47	47	47	47	47

						LOOK-U	P TABLES		
1400.0	47	47	47	47	47	47	47	47	47
1500.0	47	47	47	47	47	47	47	47	47
1600.0	47	47	47	47	47	47	47	47	47
1700.0	45	45	45	45	45	45	45	45	45
1800.0	45	45	45	45	45	45	45	45	45
1900.0	44	44	44	44	44	44	44	44	44
2000.0	43	43	43	43	43	43	43	43	43
2100.0	43	43	43	43	43	43	43	43	43
2200.0	43	43	43	43	43	43	43	43	43
2300.0	43	43	43	43	43	43	43	43	43
2400.0	43	43	43	43	43	43	43	43	43
2500.0	43	43	43	43	43	43	43	43	43
2600.0	43	43	43	43	43	43	43	43	43
2700.0	43	43	43	43	43	43	43	43	43
2800.0	43	43	43	43	43	43	43	43	43
2900.0	43	43	43	43	43	43	43	43	43
3000.0	43	43	43	43	43	43	43	43	43
3100.0	43	43	43	43	43	43	43	43	43
3200.0	43	43	43	43	43	43	43	43	43

P0521

	EngSpeedWeig	htFactorTab	le		AXIS is Engine F	RPM, Curve is W	eight Factor		
Axis	0	500	900	1000	2000	3000	4000	5000	6000
Curve	0	0	0	0	0	0	0	0	0
	EngOilTempWe	ightFactorTa			AXIS is Engine (
Axis	-10	-5	60	80	90	100	120	130	140
Curve	0	1	1	1	1	1	1	1	0
	EngLoadStabili	tyWeightFac	torTable		AXIS is Engine F	RPM, Curve is W	eight Factor		

Curve 1 1

CSED Section

KtIDLC_n_CLO_ThrshOfst
Coolant Temperature
I Offset to be considered Cat Light Of

KalDLC_n_EngDsrdBase[CilDLR_PN]	1000
KalDLC_n_EngDsrdBase[CilDLR_PN]	
KalDLC_n_EngDsrdBase(CliDLR_PN]	
Coolant Temperature -40 -28 -16 -4 8 20 32 44 56 68 80 92 104 116 128 140	152
Base RPM 800 800 800 800 780 750 705 665 625 600 600 600 600 666 725 725	725

KalDLC_n_EngDsrdBase[CilDLR_DR]

Coolant Temperature

Base RPM

Phaser Section KtPHSD_phi_CamPosErrorLimIc1

X axis is Deg C Y axis is RPM

		axis is Krivi															
	-40.0000	-28.0000	-16.0000	-4.0000	8.0000	20.0000	32.0000	44.0000	56.0000	68.0000	80.0000	92.0000	104.0000	116.0000	128.0000	140.0000	152.0000
400	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
800	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
1200	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
1600	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
2000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
2400	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
2800	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
3200	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
3600	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
4000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
4400	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
4800	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
5200	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
5600	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
6000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
6400	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
6800	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000

09 OBDG07 Engine Diagnostics

MAIN SECTION 1 of 2 Sections

LOOK-UP TABLES

KtPHSD_phi_CamPosErrorLimEc1

rLimeci																	
		X axis is Deg C															
		Y axis is RPM															
_	-40.0000	-28.0000	-16.0000	-4.0000	8.0000	20.0000	32.0000	44.0000	56.0000	68.0000	80.0000	92.0000	104.0000	116.0000	128.0000	140.0000	152.0000
400	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
800	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
1200	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
1600	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
2000	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
2400	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500		3.7500	3.7500	3.7500
2800	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
3200	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
3600	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
4000	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500		3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
4400	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
4800	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
5200	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
5600	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
6000	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
6400	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
6800	3,7500	3,7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500	3,7500	3,7500	3,7500	3,7500	3.7500

KtPHSD_t_StablePositionTimeIc1

X axis is Deg C

	· · ·	axis is RPM															
	-40.0000	-28.0000	-16.0000	-4.0000	8.0000	20.0000	32.0000	44.0000	56.0000	68.0000	80.0000	92.0000	104.0000	116.0000	128.0000	140.0000	152.0000
400	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
800	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
1200	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
1600	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
2000	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
2400	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
2800	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
3200	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
3600	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
4000	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
4400	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
4800	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
5200	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
5600	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
6000	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
6400	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350
6800	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350	3.350

KtPHSD_t_StablePositionTimeEc1

X axis is Deg C

	Y	axis is RPM															
_	-40.0000	-28.0000	-16.0000	-4.0000	8.0000	20.0000	32.0000	44.0000	56.0000	68.0000	80.0000	92.0000	104.0000	116.0000	128.0000	140.0000	152.0000
400	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
800	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
1200	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
1600	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
2000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
2400	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
2800	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
3200	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
3600	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
4000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
4400	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
4800	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
5200	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
5600	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000
6000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000
6400	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
6800	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000

P0068: MAP / MAF / TPS Correleation

X-axis is TPS (%) Data is MAP threshold (kPa) 10.0006 14.9994

5.0003 19.9997 25.0000 30.0003 35.0006 39.9994 99.9985 Data 21.4531 22.8125 18.6875 19.5859 19.2266 100.0000 100.0000 100.0000

X axis is TPS (%)
Data is MAF threshold (grams/sec)
10.0006 14.9994 19.9997 25.0000 30.0003 35.0006 39.9994 99.9985 15.4297

P1682: Ignition Voltage Correleation

X-axis is IAT (DegC)
Data is Voltage threshold (V)
85.0000 95.0000 10.0000 7.0000

				FAU	LT BU	NDLE	DEFII	NITION	IS			
Cert Doc Bundle Name				P	codes							
CatalystSysEfficiencyLoB1_FA	P0420											
CatalystSysEfficiencyLoB2 FA	P0430											
EvapPurgeSolenoidCircuit_FA	P0443											
	P0496											
EvapVentSolenoidCircuit_FA	P0449											
EvapSmallLeak_FA	P0442											
EvapEmissionSystem_FA	P0455	P0446										
FuelTankPressureSnsrCkt FA	P0453	P0453										
ruerrankPressureSrisiCkt_FA	P0452	P0455										
CoolingFanSpeedTooHigh_FA	P0495											
FuelLevelDataFault	P0461	P0462	P0463	P2066	P2067	P2068						-
i usilevcidatai dult	1 0401	F 0402	F 0403	F 2000	F 2001	F 2000						
PowertrainRelayFault	P1682											
PowertrainRelayStateOn_FA	P0685											
	P0685										+	1
IgnitionOffTimer FA	P2610										+	
IgnitionOffTimeValid	P2610											
TimeSinceEngineRunningValid												
imeomeengmekunningvallo	P2010											
VehicleSpeedSensor_FA	P0502	P0503	P0722	P0723								
	Docoo	Docoo	D0700	D0700								
VehicleSpeedSensorError	P0502	P0503	P0722	P0723								
FuelTrimSystemB1_FA	P0171	P0172										
FuelTrimSystemB2 FA	P0174	P0175										
r dorrinioyotomb2_r / t		1 0170										
A/F Imbalance Bank1	P1174											
A/F Imbalance Bank2	P1175											
TO IMPORATION DATE.	1 1110											
AIRSystemPressureSensor FA	P2430	P2431	P2432	P2433	P2435	P2436	P2437	P2438				
AIR System FA	P0411	P2440	P2444	. 2.00	. 2.00	. 2 100	1 2 107	. 2.00				1
AIRValveControlCircuit FA	P0412	1 2-770	1 4 777			+			+			+
AIRPumpControlCircuit FA	P0418					+			+			+
That dispositionolicult i A	1 0-10								+			+
Clutch Sensor FA	P0806	P0807	P0808			+			-			+
	P0807	F 0007	F 0000			+			-			+
ClutchPositionSensorCktHi FA	P0808											
EthanolCompositionSensor_FA	P0178	P0179										
Engine Minfine Data start TETICO	DOGGO	D0004	DOCCO	DOCCO	D0004	DOOGE	DOCCO	D0007	DOSCO			
EngineMisfireDetected_TFTKO		P0301	P0302	P0303	P0304	P0305	P0306	P0307	P0308		+	1
EngineMisfireDetected_FA	P0300	P0301	P0302	P0303	P0304	P0305	P0306	P0307	P0308			
KS_Ckt_Perf_B1B2_FA	P0324	P0325	P0326	P0327	P0328	P0330	P0332	P0333				
Institute Outer ADd	D0054	Doose	Doose	D0054	Dooss	Doose	D0057	Doose				
gnitionOutputDriver_FA	P0351	P0352	P0353	P0354	P0355	P0356	P0357	P0358				
O2S_Bank_ 1_TFTKO	P0131	P0132	P0134	P2A00								
O2S Bank 2 TFTKO	P0151	P0152	P0154	P2A03	_	1	_			+	1	1

				FAU	LT BU	NDLE	DEFI	NOITIN	IS			
O2S Bank 1 Sensor 1 FA	P2A00	P0131	P0132	P0133	P0134	P0135	P0053	P1133				
	P013A	P013B	P013E	P013F	P2270	P2271	P0137	P0138	P0140	P0141	P0054	
	P2A03	P0151	P0152	P0153	P0154	P0155	P0059	P1153	1 0 1 4 0	1 0141	1 0004	
	P013C	P013D	P014A	P014B	P2272	P2273	P0157	P0158	P0160	P0161	P0060	
OZS_Barik_Z_Serisor_Z_r A	F 0 13C	FUISD	10147	10140	1 2212	1 2213	10137	10130	10100	10101	1 0000	
ECT_Sensor_Ckt_FA	P0117	P0118				+						
ECT_Sensor_Ckt_TPTKO	P0117	P0118										
ECT_Sensor_Ckt_TFTKO	P0117	P0118										
ECT Sensor DefaultDetected	P0117	P0118	P0116	P0125								
ECT Sensor FA	P0117	P0118	P0116	P0125	P0128							
ECT Sensor TFTKO	P0117	P0118	P0116	P0125								
	P0116											
	P0117	P0118				-						
	P0118					-						
	P0117					-						
AmbientAirPressCktFA	P2228	P2229										
AmbientAirPressCktFA NoSnsr	_	P0107	P0108			+						
	P0106	P0107	P0108	P2227	P2228	P2229		+	+			
	P012B	P012C	P012D	P2227	P2228	P2229		+	+			
	P0106	P012C	P012B	1 2221	1 2220	1 2223		+	+			
				nally Asnira	ated SC if o	suprecharge	d NoSner	is Normally	Asnirated w	ith no Baro	Sensor	
AmbientAirDelauit	INA IS IIAS	Daio Selis	or and Non	Tally Aspire	Teu, SC II s	suprecharge	u, Noonsi	15 NOTHAILY	Aspirated w	Titl Ho Baio	Jenson	
AT SensorCircuitTFTKO	P0112	P0113										
_	P0112	P0113										
	P0112	P0113										
	P0112 P0111	P0113	P0113									
	P0111	P0112	P0113									
_	P0097	P0098										
IAT2_SensorCktTFTKO_NoSnsr		P0113										
	P0097	P0098										
AT2_SensorCircuitFA_NoSnsr		P0113										
	P0097	P0098										
	P0112	P0113	D00									
	P0096	P0097	P0098						1			
	P0111	P0112	P0113						1			
IAT2_SensorFA	P0096	P0097	P0098						4			
AT2_SensorFA_NoSnsr	P0111	P0112	P0113				-					
SuperchargerBypassValveFA	P2261					+						
	P3400	+				+		+	+			
	P0101	+				+		+	+			
_	P0101	+				+		+	+			
	P0106	+				+		+	+			
-	P0106	+				+		+	+			
_	P012B	+				+		+	+			
	P012B	+				+		-	+			
	P012B	+				+			+			
						+						
ThrottlePositionSnsrPerfTFTKO	PU121											
	P0101	P0102	P0103			+		+	1			
MAF SensorFA												
	P0101	P0102	P0103			_						

				FAUI	LT BU	NDLE	DEFII	NOITIN	IS			
MAF SensorCircuitFA	P0102	P0103					1	1	1			
	P0102	P0103										
WIAI _OCHSOFOII CUITTI TRO	1 0102	1 0 100										
MAP SensorTFTKO	P0106	P0107	P0108									
<u> </u>	P0106	P0107	P0108									
	P012B	P012C	P012D									
	P012B	P012C	P012D									
	P012C	P012D										
	P0106	P0107	P0108									
	P012B	P012C	P012D									
AfterThrottleVacuumTFTKO NA	P0106	P0107	P0108									
AfterThrottleVacuumTFTKO SC		P012C	P012D									
	P012C	P012D										
	P0106	P0107	P0108									
	P012B	P012C	P012D									
_	P0107	P0108					1					
_			P0107, P01	108 Pendino	1		1					
_ 5			,		1		1					
CrankCamCorrelationTFTKO	P0016	P0017	P0018	P0019			1					
	P0335	P0336					1					
	P0335	P0336										
	P0016	P0017	P0018	P0019	P0340	P0341	P0345	P0346	P0365	P0366	P0390	P0391
	P0016	P0017	P0018	P0019	P0340	P0341	P0345	P0346	P0365	P0366	P0390	P0391
	P0016	P0018		1.22.0	1.22.0	1		1. 23.0				. 5551
CrankExhaustCamCorrelationFA		P0019					1					
	P0016	P0018	P0340	P0341	P0345	P0346						
	P0016	P0018	P0340	P0341	P0345	P0346						
	P0017	P0019	P0365	P0366	P0390	P0391						
	P0017	P0019	P0365	P0366	P0390	P0391						
	P0016	P0018	P0340	P0341	P0345	P0346						
	P0016	P0018	P0340	P0341	P0345	P0346						
	P0017	P0019	P0365	P0366	P0390	P0391						
	P0017	P0019	P0365	P0366	P0390	P0391						
	P0016	P0018										
	P0017	P0019										
	P0335	P0336										
	P0335	P0336										
	P0335	P0336										
CrankSensor TFTKO	P0335	P0336										
	P0016	P0017	P0018	P0019	P0340	P0341	P0345	P0346	P0365	P0366	P0390	P0391
	P0016	P0017	P0018	P0019	P0340	P0341	P0345	P0346	P0365	P0366	P0390	P0391
CamSensor TFTKO	P0016	P0017	P0018	P0019	P0340	P0341	P0345	P0346	P0365	P0366	P0390	P0391
	. 5510	. 5517	. 5510	. 5510	. 5510	. 5511	. 5510	. 5510	. 5500	. 5500	. 5500	. 5001
AnyCamPhaser FA	P0010	P0011	P0013	P0014	P0020	P0021	P0023	P0024				
· =	P0010	P0011	P0013	P0014	P0020	P0021	P0023	P0024				
	P0010	P0011	P0020	P0021	. 5520		. 5520	. 5521				
		1		1			1					
EGRValvePerformance FA	P0401	P042E					1					
	P0403	P0404	P0405	P0406								
	P0405	P0406	P042E									
EGRValveCircuit TFTKO	P0403	P0404	P0405	P0406					1			
EGRValvePerformance TFTKO		P042E	1 0 100	1 0 700			1	+				+
	. 5.51											
EngineMetalOvertempActive	P1258											
	. 1200	-	+			+	-		-			

					T DII	NDI E	DEEL	UTION	10			
				FAUL	-I RO	NULE	DEFIN		15			
	no codes?											
A/C_FailedOn	P0645											
- OIT O OI 1154	D0407	D0400										
EngOilTempSensorCircuitFA	P0197	P0198 sor FA or IA	AT Camaan	CinaiAE A								
EngOilModeledTempValid	ECT_Sens	SOI_FA OF IA	- Senson	CITCUILFA								
EngOilPressureSensorCktFA	P0522	P0523										
EngOilPressureSensorFA	P0521	P0522	P0523									
see Trans Summary Tables												
CylnderDeacDriverTFTKO	P3401	P3409	P3417	P3425	P3433	P3441	P3449					
BrakeBoosterSensorFA	P0556	P0557	P0558	1	1							
BrakeBoosterVacuumValid	P0556	P0557	P0558				1		1			
BrakeBoosterVacuumValid	VehicleSp	eedSensorl	rror or MA	.P_SensorF	A							
FuelInjectorCircuit FA	D0204	DOSOS	DUSUS	D0204	DOOF	DOOG	D0207	D0200	1			
FuelInjectorCircuit_FA FuelInjectorCircuit TFTKO	P0201 P0201	P0202 P0202	P0203 P0203	P0204 P0204	P0205 P0205	P0206	P0207 P0207	P0208 P0208				
Fuelinjector Circuit_TFTKO	F0201	F0202	F0203	FU2U4	F0203	F0200	F0201	FU200				
ControllerProcessorPerf FA	P0606											
ControllerRAM Error FA	P0604											
TPS_Performance_FA	P0068	P0121	P1516	P2101								
EnginePowerLimited	P0068	P0606	P0120	P0122	P0123	P0220	P0222	P0223	P0641	P0651		
	P1516	P2101	P2120	P2122	P2123	P2125	P2127	P2128	P2135	P2138	P2176	
TPS1_OutOfRange_Composite	D0120	P0122	P0123									
TPS1_OutOfRange_Composite	P0120	P0122	P0123									
TPS FA	P2135			Composite	and TPS2	OutOfRand	ge_Compos	ite)				
TPS_FaultPending							there is no		or a pendin	g flag		
										33		
TPS_ThrottleAuthorityDefaulted	P0068	P0606	P1516	P2101	P2135	P2176	V5B_Out0	OfRange_C	omposite			
						ge_Compos						
						_Composit	e)					
AcceleratorEffectivePstnValid	Always se	t to TRUE,	no P codes	will set to I	FALSE				1			1
5VoltReferenceA FA	P0641			1		-			+			
5VoltReferenceB FA	P0651			1			1					
O TOTAL COLOROD I A	. 0001			1			1		+		+	
IAC_SystemRPM_FA	P0506	P0507										
TransmissionGearDefaulted	P182E	P1915										
TransmissionEngagedState_FA	P182E	P1915										
FourWheelDriveLowStateValid	P2771											
	1	1	1	1	1	1	1					
EngineTorqureInaccurate	EngineMig	fireDetecte	d FA or									

								_	1		1
			FAUL	T BUN	NDLE	DEFIN	IITION	S			
	FuelInjectorCircuit	TETKO or									
	FuelTrimSystemB	_									
	FuelTrimSystemB2	2 FA or									
	MAF_SensorTFTK	(O or									
	MAP_SensorTFTK	O or									
	EGRValvePerform	ance FA									
	EGITTANOI GIIGIIII	171									
Long Name	Short Name										
Bank	В										
Brake	Brk										
Circuit	Ckt										
Engine	Eng										
Fault Active	FA										
Intake	Intk										
Naturally Aspirated	NA										
Performance	Perf			1		1	+	+			
Position	Pstn			+		1	+	+			
Pressure	Press			+		+	+	+			
Sensor	Snsr			+		+	+	+			
Supercharged	SC										
System	Sys										
Test Failed This Key On	TFTKO										
rest railed This Key On	IFIKU										
			10.0/								
LowFuelConditionDiagnostic	Flag set to TRUE i	the fuel level	< 10 %								
	AND										
	No Active DTCs:	FuelLevel	DataFault								
		P0462									
		P0463									
	for at least 30 seco	onds.									
Transfer Pump is Commanded											
On	Fuel Volume in Pri	mary Fuel Tan	k < 0.0 liter	s							
	AND										
	Fuel Volume in Se	condary Fuel 7	Γank≥ 100.	0 liters							
	AND										
	Transfer Pump on	Time < Transf	ferPumpOr	TimeLimit	Table						
	AND										
	Transfer Pump had	d been Off for	at least 0.0	seconds							
	AND										
	Evap Diagnostic (F	Purge Valve Le	ak Test, La	rge Leak							
	Test, and Waiting			•							
	AND	J.,									
	Engine Running					1					
	.gg										
				+		1	+	†			
	1		1	1	l		1		1	1	1

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
uel System Control Module:								
Fuel Rail Pressure (FRP) Sensor Performance (Rationality)	P0191	This DTC detects if the fuel pressure sensor is stuck within the normal operating range	Absolute value of change in fuel pressure as sensed during intrusive test.	<= 30 kPa	1. FRP Circuit Low DTC (P0192) 2. FRP Circuit High DTC (P0193) 3. FuelPump Circuit Low DTC (P0231) 4. FuelPump Circuit High DTC (P0232) 5. FuelPump Circuit Open DTC (P023F) 6. Reference Voltage DTC (P0641) 7. Reference Voltage DTC (P0646) 8. Fuel Pump Control Module Driver Over-temperature DTC's (P064A, P1255) 9. Control Module Internal Performance DTC (P0606) 10. Engine run time 11. Emissions fuel level (PPEI \$3FB) 12. Fuel pump control 13. Fuel pump control state 14. Engine fuel flow 15. ECM fuel control system	not active not active not active not active not active	Frequency: Continuous; 12.5 ms loop. 60 seconds between intrusive tests that pass Intrusive test requested if fuel system is clamped for >= 5 seconds or fuel pressure error variance <= 0.6 (calculated over a 2.5sec period); otherwise report pass Duration of intrusive test is fueling related (5 to 12 seconds). Intrusive test is run when fuel flow is < 29.7 g/s	DTC Type A 1 trip

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Fuel System Control Module:				•		•		
Fuel Rail Pressure (FRP) Sensor Circuit Low Voltage	P0192	This DTC detects if the fuel pressure sensor circuit is shorted to low	FRP sensor voltage	< 0.1 V			72 failures out of 80 samples	DTC Type A 1 trip
					Ignition AND Reference Voltage DTC P0641	Run or Crank	1 sample/12.5 ms	
Fuel Rail Pressure (FRP) Sensor Circuit High Voltage	P0193	This DTC detects if the fuel pressure sensor circuit is shorted to high	FRP sensor voltage	> 4.9 V	Treference Voltage B101 00+1		72 failures out of 80 samples	DTC Type A 1 trip
					Ignition AND	Run or Crank	1 sample/12.5 ms	
Fuel Dump Central Circuit	D0221	This DTC detects if the fuel numb	Fuel Dump Current	> 14.48A	Reference Voltage DTC P0641	not active	72 test failures in	DTC Tupo A
Fuel Pump Control Circuit P02 Low Voltage	P0231	This DTC detects if the fuel pump control circuit is shorted to low	Fuel Pump Current	> 14.48A	Ignition OR	Run or Crank	72 test failures in 80 test samples if Fuel Pump Current <100A 3 test failures in 15 test samples if Fuel Pump Current	
					HS Comm OR Fuel Pump Control AND	enabled enabled	>=100A 1 sample/12.5 ms	
					Ignition Run/Crank Voltage	9V < voltage < 18V		
Fuel Pump Control Circuit High Voltage	P0232	This DTC detects if the fuel pump control circuit is shorted to high	Voltage measured at fuel pump circuit	> 3.86 V	Commanded fuel pump output		36 test failures in 40 test samples; 1 sample/12.5ms	DTC Type A
					Fuel pump control enable		Pass/Fail determination made only once per trip	
					Time that above conditions are met	>=4.0 seconds	bei tiib	
Fuel Pump Control Circuit (Open)	P023F	This DTC detects if the fuel pump control circuit is open	Fuel Pump Current	<=0.5A			72 test failures in 80 test samples; 1 sample/12.5ms	DTC Type A
			AND Fuel Pump Duty Cycle	>20%	Ignition OR HS Comm OR Fuel Pump Control AND	Run or Crank enabled enabled		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Fuel System Control								
Module:								
					Ignition Run/Crank Voltage	9V < voltage < 18V		
Fuel System Control Module Enable Control Circuit	P025A	This DTC detects if there is a fault in the fuel pump control enable circuit		≠ Fuel Pump Control Module Enable Control Circuit			72 failures out of 80 samples	DTC Type A 1 trip
			,		Ignition AND PPEI Fuel System Request	Run or Crank	1 sample/12.5 ms	
					(\$1ED)			
Control Module Read Only Memory (ROM)	P0601	This DTC will be stored if any software or calibration check sum is incorrect		≠ stored checksum for any of the parts (boot, software, application calibration, system calibration)	Ignition OR	Run or Crank	1 failure if it occurs during the first ROM test of the ignition cycle, otherwise 5 failures Frequency:	DTC Type A 1 trip
					HS Comm		Runs continuously in the background	
					OR			
Control Module Not	P0602	Indicates that the FSCM needs to	This DTC is not via calibration	TRUE	Fuel Pump Control	enabled	Duna anao at	DTC Tune A
Programmed		be programmed	when KeMEMD b NoStartCal	IRUE	Ignition OR		Runs once at power up	DTC Type A 1 trip
					HS Comm OR Fuel Pump Control	enabled enabled		
Control Module Long Term Memory Reset	P0603	Non-volatile memory checksum error at controller power-up	Checksum at power-up	≠ checksum at power-down			1 failure	DTC Type A 1 trip
					1		Frequency: Once at power-up	
					Ignition OR HS Comm	Run or Crank enabled		
					OR Fuel Pump Control	enabled		
Control Module Random	P0604	Indicates that control module is	Data read	≠ Data written	Fuel Pump Control	enabled	1 failure if it occurs during the first	DTC Type A 1 trip
Access Memory (RAM)		unable to correctly write and read data to and from RAM					RAM test of the ignition cycle, otherwise 5 failures	пир
					Ignition OR	Run or Crank	Frequency:	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Fuel System Control Module:								
					HS Comm		Runs continuously in the background.	
					OR Fuel Pump Control	enabled		
Control Module Internal Performance 1. Main Processor Configuration Register Test	P0606	This DTC indicates the FSCM has detected an internal processor fault or external watchdog fault (PID 2032 can tell what causes the fault.)	For all I/O configuration register faults:				Tests 1 and 2 1 failure Frequency: Continuously (12.5ms)	DTC Type A 1 trip
			•Register contents 2. For Processor Clock Fault: •EE latch flag in EEPROM. OR		OR HS Comm OR		Test 3 3 failures out of 15 samples	
2. Processor clock test			RAM latch flag.	0x5A5A	2. For Processor Clock Fault: *KeMEMD_b_ProcFltCLKDiagEn		1 sample/12.5 ms	
3. External watchdog test			For External Watchdog Fault: Software control of viper chip.	Control Lost	bl 3. For External Watchdog Fault: •KeFRPD_b_FPExtWDogDiagEn bl 3. For External Watchdog Fault: •Control Module ROM(P0601) 3. For External Watchdog Fault: •Control Module RAM(P0604)	TRUE not active		
Control Module Long Term Memory (EEPROM) Performance	P062F	Indicates that the NVM Error flag has not been cleared	Last EEPROM write	Did not complete			1 test failure Once on controller power-up	DTC Type A 1 trip
					HS Comm OR	enabled enabled		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Fuel System Control Module:								
5 Volt Reference Circuit (Short High/Low)	P0641	Detects a continuous short on the #1 5V sensor reference circuit					15 failures out of 20 samples	DTC Type A 1 trip
			Reference voltage AND Output OR Reference voltage AND Output OR Reference voltage AND Output AND Output	>= 0.5V inactive >= 5.5V active <= 4.5V active	Ignition	Run or Crank	1 sample/12.5 ms	
5 Volt Reference Circuit (Out of Range)	P06A6	Detects that the #1 5 V sensor reference circuit is out of range	Reference voltage	> 102.5% nominal (i.e. 5.125V)	Ignition	Run or Crank	72 failures out of 80 samples	DTC Type A 1 trip
				OR < 97.5% nominal (i.e. 4.875V)			1 sample/12.5 ms	
Fuel Pump Control Module - Driver Over-temperature 2	P1255	This DTC detects if an internal fuel pump driver overtemperature condition exists under extreme operating conditions (GM's responsibility)	Module Range of Operation	Outside normal range (FSCM is NOT in normal operating range for module voltage versus PWM duty cycle. Linear range from 100% @ 12.5V to 70% @ 18V.)			3 failures out of 15 samples 1 sample/12.5 ms	DTC Type B 2 trips
			AND		Ignition OR HS Comm OR	Run or Crank enabled		
			Viper Temp	> 190C	Fuel Pump Control KeFRPD_b_FPOverTempDiagEn bl Ignition Run/Crank	enabled TRUE 9V <voltage<18v< td=""><td></td><td></td></voltage<18v<>		
lgnition 1 Switch Circuit Low Voltage	P2534	This DTC detects if the Ignition1 Switch circuit is shorted to low or open	Ignition 1 voltage	<= 6 V	Engine	Running	160 samples 1 sample/12.5 ms	DTC Type A 1 trip
Fuel Pump Flow Performance	P2635	This DTC detects degradation in the performance of the electronic return-less fuel system	Filtered fuel rail pressure error	<= Low Threshold (function of desired fuel rail pressure and fuel flow rate. Typical values in the range of -28.4 to -193.5 kPa.) OR		not active	Filtered fuel rail pressure error Time Constant = 12.5 seconds	DTC Type B 2 trips
							Frequency: Continuous 100 ms loop	

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM
uel System Control lodule:								
				> High Threshold (function of desired fuel rail pressure and fuel flow rate. Typical values in the range of 19.5 to 166.5 kPa.)	2. FRP Circuit High DTC (P0193)			
						not active		
					(P0231) 5. FuelPump Circuit High DTC (P0232)	not active		
					6. FuelPump Circuit Open DTC (P023F) 7. Reference Voltage DTC	not active		
					(P0641) 8. Reference Voltage DTC (P06A6)	not active		
					9. Fuel Pump Control Module Driver Over-temperature DTC's (P064A, P1255)	not active		
					10. Control Module Internal Performance DTC (P0606)	not active has not occurred		
					failure (PPEI \$1ED) 12. The Barometric pressure	valid (for absolute fuel		
					13. Engine run time14. Emissions fuel level (PPEI	pressure sensor) >= 30 seconds not low		
					\$3FB) 15. Fuel pump control 16. Fuel pump control state 17. Battery Voltage 18. Fuel flow rate	enabled normal 11V<=voltage=<18V > 0.047 g/s AND <= Max allowed fuel		
						flow rate as a function of desired rail pressure & Vbatt (Typical values in the range of 11 to 30		
					19. Fuel Pressure Control System	n/s) Is not responding to an over-pressurization due to pressure build during DFCO or a decreasing		
						desired pressure command.		

COMPONENT/ SYSTEM	FAULT CODE	MONITOR STRATEGY DESCRIPTION	MALFUNCTION CRITERIA	THRESHOLD VALUE	SECONDARY PARAMETERS	ENABLE CONDITIONS	TIME REQUIRED	MIL ILLUM.
Fuel System Control Module:								
Control Module Communication Bus "A" Off		Detects that a CAN serial data bus shorted condition has occurred to force the CAN device driver to enter a bus-off state	Bus Status	Off	1. Power mode		5 failures out of 5 samples (5 seconds)	DTC Type B 2 trips
Lost Communication With ECM/PCM "A"		Detects that CAN serial data communication has been lost with the ECM			Ignition Run/Crank Voltage			DTC Type B 2 trips